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Abstract

Pairs trading via futures calendar spreads offers a robust market-neutral ap-
proach to exploiting transient mispricings, yet real-time implementation is hin-
dered by asynchronous trading. This paper introduces a Cointegrated Ising Spin
Model for real-time signal generation in high-frequency spread trading. The
model links the macro-level equilibrium of cointegration with micro-level agent
interactions, representing prices as magnetizations in an agent-based system. A
novel A-weighted arbitrage force dynamically adjusts agents’ corrective behav-
ior to account for information staleness. Calibrated on tick-by-tick Brent crude
oil futures, the model produces a time-varying probability of spread reversion,
enabling probabilistic trading decisions. Backtesting demonstrates a 74.65% suc-
cess rate, confirming the model’s ability to generate stable, data-driven arbitrage
signals in asynchronous environments.

The model bridges macro-level cointegration with micro-level agent interac-
tions, representing prices as magnetizations within an agent-based Ising system.
A novel feature is a A-weighted arbitrage force, where the corrective pres-

sure applied by agents in response to the standard Error Correction Term is
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dynamically amplified based on information staleness. The model is calibrated
on historical tick data and designed to operate in real time, continuously updating

its probability-based trading signals as new quotes arrive.

1 Introduction

1.1 Statistical Arbitrage and Futures Spread Trading

Trading futures calendar spreads—the simultaneous purchase and sale of futures con-
tracts on the same asset but with different delivery months—is a cornerstone of high-
frequency statistical arbitrage (SA) [10]. Such strategies aim to profit from temporary
deviations in the price relationship between contracts, relying on the statistical likeli-
hood that these mispricings will revert to a historical or theoretical equilibrium [15].
Unlike pure arbitrage, SA strategies involve risk but seek to generate market-neutral
returns by exploiting these predictable patterns, which are often identified through
quantitative models 15, 18].

Futures contracts, due to their standardized nature and liquidity, are frequently
employed in SA strategies. Inter-calendar spreads, in particular, are a popular strat-
egy involving the simultaneous purchase of a futures contract for one delivery month
and the sale of another futures contract for a different delivery month, on the same un-
derlying asset [10]. These spreads can reflect market expectations about future supply
and demand, storage costs (cost of carry), and convenience yields. Deviations in these
spreads from their historical norms or fundamentally expected levels can present SA
opportunities, assuming mean reversion or predictable patterns in the term structure.
Spread trading strategies, particularly those based on pairs of liquid instruments, are
widely employed across financial markets. These strategies rely on identifying tem-
porary deviations in price relationships—often modeled via cointegration—that are
expected to mean-revert over time. Pairs may consist of contracts on the same under-
lying asset with different maturities (calendar spreads), or different but closely related
assets (inter-market spreads), such as futures, ETFs, or equities with fundamental or
statistical linkages. The effectiveness of such strategies depends critically on the avail-
ability of high-frequency trading data, adequate market depth, and minimal execution
delays.

Although the framework developed in this paper is general and applicable to any



such pair exhibiting liquid and asynchronous trading, we illustrate its implementation
using the Brent crude oil futures of the first and second-month. These contracts are
among the most actively traded globally, offering a natural testbed for evaluating high-

frequency arbitrage strategies under real-world conditions.

2 Literature Review

The model presented in this paper draws upon several distinct but interconnected
streams of financial and econophysics literature: statistical arbitrage focusing on pairs
trading and cointegration, agent-based modeling using Ising spin systems, and the

analysis of high-frequency market dynamics.

2.1 Statistical Arbitrage, Pairs Trading, and Cointegrated Mod-

els

A foundational concept in quantitative finance is the exploitation of temporary devia-
tions from statistically identified equilibrium relationships between assets, a field for-
mally known as Statistical Arbitrage (SA) [15]. The primary goal of SA is to construct
market-neutral portfolios that profit from the expected correction of these mispricings,
thereby isolating alpha from broader market movements. The most prominent imple-
mentation of this concept is pairs trading, a strategy involving a long position in an
underpriced asset paired with a short position in a related, overpriced asset |9, 18, 10].
The success of this approach hinges on identifying assets whose prices exhibit a stable
long-run relationship.

The theoretical underpinnings for identifying such relationships often stem from
concepts like Arbitrage Pricing Theory (APT). APT suggests that if two securities
share identical risk factor exposures, their expected returns over a given period should
be the same [I8]. Deviations from this parity, manifested in the spread between their
(log) prices, are expected to be temporary and mean-reverting, forming the basis for
pairs trading.

The econometric cornerstone for identifying mean-reverting spreads between non-
stationary price series is the concept of cointegration, famously developed by Engle

and Granger [7]. If two non-stationary time series, say the log-prices pt and pZ, are



cointegrated, there exists a linear combination

Sy =p; —vpl — e (1)

(the spread, or cointegrating residual) that is stationary. The parameter ~ is the coin-
tegration coefficient, and . (or an intercept in the cointegrating relation) represents
the long-run equilibrium level of the spread.

The dynamics of cointegrated systems are often captured by a Vector Error Cor-
rection Model (VECM). A VECM describes how the individual series adjust when the
spread deviates from its long-run equilibrium. A common representation of the VECM,

including first-order lagged difference terms for short-run dynamics, is:

Apt = aalpity — P — p2) + dalpity + valdpl | + € (2)
Apf = ap(pl, —ypl, — 1) + dpApt, +vpApl, +€f (3)

where a4 and ap are the speeds of adjustment, (p | —ypZ | —yu.) is the error correction
term (ECT) from the previous period, and ¢4, 14, ¢5, g are coefficients for the first-
order lagged differences of Ap* and Ap® [18,8]. More general VECM representations
would include higher-order lags of these differences.

For the VECM system to be stable and mean-reverting, the adjustment speeds a4
and ap must possess specific signs. With the ECT defined as pi* | —yp?Z | — ., stability
requires ay < 0 and (for v > 0) ap > 0. These signs ensure that a positive deviation
(ECT > 0) is corrected by a decrease in p and/or an increase in p?, and vice versa for
a negative deviation. The model presented here adapts this error-correction principle,
translating the statistical adjustment speeds (a4, ap) into a 'PullTerm’ that directly
influences agent behavior at the micro-level, as detailed in Section 3.

Trading strategies are then built by taking positions when the spread deviates
significantly (e.g., by a threshold A) from its mean pu,, expecting a reversion [I8],
9]. The Stock-Watson common trends model provides another perspective, suggesting
that cointegrated series share common underlying non-stationary components that are
nullified in the cointegrating relationship [17, 18]. Advanced pairs trading frameworks
may also incorporate tools like Kalman filters for dynamic hedge ratio estimation and
other indicators like the Hurst exponent to assess mean-reversion persistence [10)].

However, a critical limitation of the classic VECM framework (Egs. and

is the assumption that error correction is driven solely by the disequilibrium of the



immediately preceding period. In high-frequency markets, this assumption is often
violated, as information lags and gradual price discovery can lead to delayed adjust-
ments [10]. This issue of "delayed cointegration" has recently been explored from a
continuous-time, mathematical finance perspective. For instance, Yan et al. [19] model
the cointegrated price process as a path-dependent stochastic delay differential equa-
tion (SDDE), representing the limit of a high-order VECM. Their work focuses on
deriving a mathematically optimal portfolio allocation by solving a system of Riccati
partial differential equations.

While such analytical approaches provide a rigorous theoretical foundation for de-
layed adjustment, they are often difficult to implement and calibrate directly with
discrete, asynchronous tick data. The present study addresses the same fundamental
problem of delayed error correction but from a complementary, micro-founded per-
spective. Instead of modeling the continuous price path,this study uses an agent-based
framework to model the discrete event-time dynamics. The model’s key innovation—a
A-weighted arbitrage force—explicitly incorporates the empirically observed time stal-
eness of trades, offering a practical, data-driven mechanism to account for delayed

information processing in a high-frequency environment.

2.2 Ising Models in Finance

The Ising model, originating from statistical mechanics to describe ferromagnetism,
has found extensive application in finance and econophysics as a framework for mod-
eling agent-based interactions and collective phenomena [0, [14]. The application of
ferromagnet theory to social imitation, where individual agent decisions (spins) are in-
fluenced by neighbors and global fields, provides a theoretical basis for these models [4].
In this context, agents (traders) are represented by spins, typically binary (S; = £1),
indicating buy /sell decisions or bullish /bearish sentiment. The aggregate state of the
system is often measured by the total magnetization M(t) = & >_. S;(t), representing
the overall market mood or trend [6l 2]. Callen and Shapero [4] discuss how concepts
like order parameters (e.g., alignment of fish, phase angle of fireflies) and even a "social
temperature" can be analogous to physical systems, further justifying the use of such
physics-inspired models for collective human behavior.

Agent decisions (spin flips) in financial Ising models are governed by a local field

hi(t). Bornholdt’s influential work [2], for example, models this local field to include:



e Neighbor Interactions (J;;): A ferromagnetic coupling (J > 0) encourages
agents to align with their neighbors, representing herding behavior or imitation
6, [].

e Global Field/External Influence (agioba1): An external field, often related to
the general state of the market (e.g. magnetization |M (¢)]), can influence individ-
ual spins. In many financial Ising models, such as Bornholdt’s, this term often
induces an anti-ferromagnetic tendency (minority game characteristic), where
agents are incentivized to take positions contrary to the majority if they believe
profits lie in being contrarian [0, [2]. This component is crucial for generating
complex dynamics such as "expectation bubbles" and intermittency. Note: this

Qiglobal 1S distinct from the ECM adjustment speeds a4, ap.

e Idiosyncratic Preferences/Strategy Spin (C;): Some models introduce het-
erogeneous agent types, such as fundamentalists (who might believe in a "true"
value) versus chartists or noise traders. This can be incorporated through strat-

egy spins that modify how an agent reacts to the global field [0, 2].

e Stochasticity /Temperature (Sresponse): The probability of a spin flip is often
a logistic function of the local field, P(flip) o< (1 + exp(—28esponsehi)) *, where
Bresponse (Inverse temperature) controls the randomness of agent decisions. High
Bresponse (low temperature) implies more deterministic behavior based on the local
field [6]. This can be seen as analogous to the concept of "social temperature",

where higher randomness equals higher social temperature [4].

Ising models, particularly configurations like those proposed by Bornholdt [2] and fur-
ther explored by others (e.g., Kaizoji et al. [12], Dvorak [6]), have been successful
in replicating several stylized facts of financial markets. These include volatility clus-
tering, heavy tails in return distributions, and the slow decay of autocorrelation in
absolute returns [0, [5, T4]. Kukacka and Kristoufek [14] found that the Bornholdt
(2001) model exhibited a strong tendency towards multifractal behavior, a complex
dynamic feature observed in real financial data, arising from its inherent correlation
structure. The "frustration" mechanism in such models, stemming from competing
influences (e.g., herding vs. contrarian global field), is key to generating rich market

dynamics.



3 A Probabilistic Agent-Based Model of Spread Re-

version

The analytical framework presented herein bridges the gap between purely statisti-
cal time series models (like VECM for cointegration) and the micro-foundations of
simulation-based Agent-Based Models. It proposes a hybrid framework where the
perceived market disequilibrium—derived from a macro-level cointegrating relation-
ship—directly influences micro-level agent decisions, creating a novel feedback loop
for modeling asynchronously traded, cointegrated assets. Conventional econometric
models, such as VECM, are inherently retrospective and assume synchronous price
discovery. In contrast, the model proposed here is designed for live implementation,

continuously ingesting market quotes to generate real-time spread-trading signals

3.1 Theoretical Foundation and Empirical Implementation

The formal specification of this framework requires distinguishing between the true
underlying market sentiment and what is observable at any given moment, explicitly
accounting for the asynchronicity of trades. In the theoretical model, for each contract
X € {A, B}, alatent magnetization M;* (latent) represents the true, unobserved ag-
gregate sentiment of all agents. The observed magnetization, MtX 0bs only updates
when a trade occurs, with the time elapsed since the last trade denoted by AX.

A core challenge in high-frequency markets is that asset prices do not update si-
multaneously. To conceptualize how agents might internalize this, we can define a
theoretical, staleness-adjusted Error Correction Term (ECT'), where the per-
ceived spread is adjusted based on the age (staleness) of the last trade in each contract.
This adjusted ECT’ reflects a hypothetical perception of disequilibrium that discounts
stale price observations. Conceptually, this could be calculated using the last observed
market sentiment (magnetization) for each contract, weighted by its staleness:

BOT,, = (MA,) - w(dl ) =y (MEGE,) - w(af)) — . 4)

~ka-8 i5 an exponential weighting function modeling the decay of in-

where w(A) = e
formation relevance. While this ECT' provides the theoretical motivation, this study’s
practical implementation models this effect more directly by applying a A-weighting to

the arbitrage force that agents exert in response to the standard, empirically observed



ECT, as detailed in Section 3.3.

To operationalize this framework for empirical application, we ground the model in
the results of the preliminary VECM analysis. The observable spread at any time t,
denoted Sy, is defined as the cointegrating residual, or the empirical Error Correction

Term (ECT), from the estimated long-run relationship:
S, =ECT, = P* —~vPP — pu, (5)

where v and p, are the parameters for the cointegrating vector and the long-run mean,
respectively, estimated from the VECM. **This empirically observed disequilibrium,
S, serves as a direct and tractable proxy for the theoretical disequilibrium otherwise
captured by the difference in latent magnetizations.** The model’s core function is to
compute the conditional probability that this spread will revert towards its mean. This
is achieved by simulating the collective behavior of a heterogeneous agent population

partitioned into two distinct behavioral archetypes: trend-followers and contrarians.

3.2 The Agent-Based Ising Spin Model

The evolution of the latent magnetization is driven by the collective decisions of indi-
vidual agents, modeled as spin flips. The probability of an agent ¢ adopting a positive
spin (e.g., a bullish stance) for contract X at time ¢ is governed by a logistic function

of a "local field," h}Y:

1
1+ exp(—28X, onse V1)

response’ “3,t—1

Prob(S;y = +1|F-1) = (6)

The local field hfg_l synthesizes the forces influencing an agent’s decision at time

t, based on information available at t — 1:

JENBRX (i) S

Vv vV
., Global Contrarian Term Cointegration Pull Term

~
Herding Term

The first two terms represent standard forces in financial Ising models: herd-
ing /imitation and a contrarian reaction to the market trend. The third term, the
‘PullTerm‘, is the novel component that directly links the agent’s decision to the

cointegrating relationship. It quantifies the arbitrage pressure derived from the per-



ceived disequilibrium, as defined in the empirical implementation by Equations

and (1))

3.3 Microfoundations of Agent Behavior and Local Field Spec-

ification

The model’s dynamics are driven by the aggregate decisions of this heterogeneous
agent population. Let A and AP represent the time elapsed (staleness) since the last
trade for contracts A and B, respectively. The decision calculus for each agent type is

informed by a synthesis of momentum and mean-reversion signals.

Modeling Agent Influences. The forces acting upon the agents are designed to
capture well-documented financial phenomena: herding, momentum-chasing, and arbitrage-
driven error correction.

First, a Herding/Momentum Influence (/P°*?) captures the tendency for social
imitation, where agents’ decisions are influenced by the perceived aggregate sentiment
of the market. This is formalized by the simulated market sentiment from the previous
period:

fherd — pysim — 9., PtTalrket buy _ 4 (8)

This term creates a feedback loop where a tendency to buy (or sell) in one period
increases the probability of similar behavior in the next.

Second, a pure Follower Influence (If!°%) represents the behavior of chartists
or momentum traders who act on recent price changes. This force is responsible for

amplifying spread deviations. Its strength is governed by the parameter Jyom:
]follow - Jmom : (St—l - St—2) (9)

A positive and significant Jy,, ensures the model can generate the positive feedback
dynamics that temporarily drive prices away from equilibrium.

Third, the Contrarian Influence (The ‘PullTerm?*) is the critical error-correction
force that underpins the mean-reverting tendency of the spread. It represents the be-
havior of arbitrageurs who identify deviations from the long-run equilibrium and trade
to correct them. This term is the practical implementation of the staleness-weighted

arbitrage response motivated by the theoretical ECT’ concept. It is a function of the



spread’s deviation from its mean, scaled by the adjustment speed parameter, . Criti-
cally, it incorporates information staleness, where the parameter kx models the degree

to which arbitrageurs amplify their reaction based on the age of price data:

Itcontr, A _,. (Sy—1 — piz) - (1 + kn - Af) (10)
Itcontr7 B - —a- (Stfl _ ,uz) . (1 + kA . AF) (11>

The negative sign ensures that a positive spread deviation (S;_; > pu.) generates a
negative (sell) pressure. The term (1 + ka - A)X) means that the corrective force is

amplified by staleness.

Agent Decision Probabilities. These distinct informational influences are synthe-
sized into a "local field", h;, for each agent type, representing the net decision-making

force.

h]{ollow — Itherd + [tfollow (12>
hgontr, A _ Itherd + ]—;:ontn A (13)
h;ontr, B _ Itherd + ];:ontr7 B (14)

The translation of this deterministic field into a stochastic decision is governed by
a logistic function. The parameter Biesponse; analogous to the inverse temperature in

statistical mechanics, controls the rationality or noise level of the agents.

1
Pfollow buy _ 15
! I+ eXp(_Qﬁresponsehgonow) ( )
1
Pcontr, A buy _ 16
' 1+ eXp(_zﬁresponsehgomr’ A) ( )
1
Ptcontr, B buy _ (17)

1+ eXp( _26response hEODtR B)

The average buy probability for the contrarian agent group is the arithmetic mean:

Ptcontr avg buy _ (Ptcontr, A buy + Ptcontr, B buy)/2'

Market-Level Aggregation and Reversal Probability. The micro-level deci-
sions are aggregated to yield a market-level signal, reflecting the market ecology. The

parameter Ng represents the proportion of contrarian agents in the total population,

10



Ntotal' N N N
k C total — 1VC pfoll
Pmar et buy _ Pcontr avg buy ota, P ollow buy (18)

! Ntotal ! Ntotal !
Finally, this aggregate probability is translated into the model’s ultimate prescriptive
output: the conditional probability of mean reversion, P, (reversal). If the spread is too

high (S;_1 > ), reversion implies selling.

1 — Ptmarket buy if Stfl > 1,

P, (reversal) = et b . (19)
Pt Y if S, < Lz

3.4 Parameter Estimation via Trading Simulation

The estimation of parameters for the proposed agent-based model presents a formidable
challenge. The high-dimensional latent state space, representing the configuration
of all agent spins, renders conventional methods such as Maximum Likelihood Esti-
mation (MLE) computationally infeasible due to an intractable likelihood function.
Similarly, while the Simulated Method of Moments (SMM) is a viable alternative
for many Agent-Based Models, it focuses on matching a set of pre-selected statis-
tical properties (moments) of the empirical data. Given that the primary goal of
this research is to develop a framework for a profitable trading strategy, we adopt
a more direct and performance-oriented estimation approach: "simulation-based op-
timization". Instead of matching statistical moments, this methodology defines an
objective function based on the success rate of a trading strategy derived from the
model itself. The model parameters are then optimized to maximize this performance
metric over the historical dataset, directly aligning the parameter estimation process
with the model’s ultimate application. The model’s free parameters, encapsulated in
the vector © 4 = {Jmom, @, ka, Bresponses N, Obuy, Osenr }, are optimized by maximizing

the historical performance of a trading strategy.

Trading Signal Generation. A trade signal is generated when the model’s prob-
abilistic output exceeds a calibrated threshold, indicating a high likelihood of mean

reversion.

e Sell Signal Generation: A signal to sell the spread is generated at time ¢ if

Si—1 > 1, and the reversal probability exceeds a sell threshold (P (reversal) >
esell)~

11



e Buy Signal Generation: A signal to buy the spread is generated at time ¢ if
Si—1 < p, and the reversal probability exceeds a buy threshold (P;(reversal) >

Obuy)-

For the backtest, the trading strategy’s logic is defined by a sophisticated, dual-
filter trigger mechanism that requires a specific alignment of statistical conviction with
confirming market dynamics. A trade signal is generated only when a set of stringent
conditions are met: for a sell signal, for example, the spread must be overvalued (S;_; >
i>), the model must indicate a high probability of reversion (P;(reversal) > 0,.;), and
recent positive momentum in the spread must validate the entry point. Buy signals are
generated symmetrically. This dual requirement acts as a powerful safety mechanism,
ensuring the strategy enters a trade precisely as a strong deviation shows signs of

exhaustion, rather than attempting to trade against adverse momentum.

Defining a Successful Trade. A trade executed at time t is assessed for success
based on the price movement in the subsequent tick, t+1. A trade is deemed successful

if the spread moves in the predicted direction.
e A sell trade is successful if the spread decreases at t + 1 (i.e., AS;; < 0).

e A buy trade is successful if the spread increases at t + 1 (i.e., AS;11 > 0).

Hybrid Objective Function for Optimization. Optimizing for the raw success
rate is a direct approach, but it ignores the probabilistic confidence of each signal.
A more robust methodology evaluates the model’s probabilistic accuracy, but only for
those instances that trigger a trade. This ensures the optimization focuses on improving
actionable forecasts. To balance signal quality with overall trading performance, we
define a hybrid objective function.

First, we define the realized outcome of a trade signal issued at time ¢. Let R; be

a binary variable indicating if the spread reverted in the subsequent period, t + 1:

1, if (S;—1 > p, and AS;11 < 0) or (S;—1 < p, and AS;1 > 0),
Ry = (20)
0, otherwise.

Next, we define the set of time steps where a trade signal is generated, denoted

12



ﬁrade:
Tirade = {t | (Si—1 > pr. A Py(reversal) > Osen) V (Si—1 < p. A Py(reversal) > Oy,,y)} (21)

The objective is to maximize the statistical consistency between the forecast P, (reversal)
and the outcome R; for all ¢ € Tiaqe. This is captured by a conditional Mean Squared
Error (MSE) objective:

Ocrise(©) = 1 — ﬁ S (P(reversal) — R,)? (22)

teﬂrade

where |Tirade| is the number of trade signals. If no trades are generated, the objective
is 0.

To reconcile signal quality with trading frequency, this calibration metric is com-
bined with the raw trading success rate, Omadesuccess(©), forming the final hybrid ob-

jective function:

Onys(0) = w Ocmse(O) + (1 — w) OmradeSuccess(©), (23)

where w € [0, 1] is a weighting parameter. This objective function is maximized over

the training dataset using a global optimization algorithm.

4 Empirical Implementation and Calibration of the

Cointegrated Ising Spin Model

The empirical validity and operational viability of the Cointegrated Ising Spin Model
(CISM) are established through its implementation and calibration as a novel frame-
work for generating real-time, probabilistic trading signals in high-frequency environ-
ments. The Cointegrated Ising Spin Model establishes a sophisticated synthesis be-
tween macro-level econometric principles and micro-level agent dynamics by concep-
tualizing the prices of two cointegrated futures contracts as aggregate magnetizations
emerging from an underlying Ising spin system. Within this system, agent decisions
are governed by a triad of forces—herding, momentum, and arbitrage—the last of
which incorporates a central methodological advance: a novel A-weighted adjustment

mechanism. This mechanism dynamically corrects for the informational staleness in-

13



herent in asynchronous trade arrivals, a feature of paramount importance for live oper-
ational viability. The empirical exercise presented herein is therefore not a conventional
backtest but rather the crucial training and calibration phase for a real-time decision
engine. Its dual objectives are, first, to demonstrate the model’s capacity to be ro-
bustly trained on high-frequency, event-time tick data, and second, to verify that the
estimated parameters yield economically meaningful and stable dynamics requisite for
reliable deployment in live trading conditions.

The empirical validation is conducted using high-frequency tick data for the two
most liquid Brent crude oil futures contracts—the front-month (LCOc1) and second-
month (LCOc2)—sourced from the LSEG Eikon platform and traded on the Interconti-
nental Exchange (ICE) in London. Each contract represents 1,000 barrels of crude oil,
is quoted in U.S. dollars per barrel with a minimum tick size of $0.01, and adheres to
a standard expiration schedule central to calendar-spread trading. The ICE Brent fu-
tures market operates electronically on a near-continuous basis (02:00 to 23:00 London
time) and exhibits a well-defined intraday liquidity profile that peaks during the Lon-
don—New York session overlap, rendering it an ideal environment for this study. For the
calibration phase, the training dataset comprises a representative trading day, 20 June
2025, from 09:30 to 23:00 London time. A raw tick-by-tick capture at a one-second
sampling rate initially yielded approximately 42,000 time-stamped observations. To
construct an event-time series reflective of actual market activity, non-trading inter-
vals were systematically removed, retaining only timestamps with at least one trade
in either contract. This filtering process resulted in a final dataset of approximately
16,000 observations, corresponding to an average trade arrival in the spread every 2.6
seconds. This resultant asynchronicity is not treated as a data imperfection but is
instead embraced as a fundamental market characteristic that the CISM is architected
to exploit. The elapsed time between consecutive trades, denoted A;, becomes a direct
and essential input that modulates the model’s arbitrage intensity. When operational-
ized, the same A; measure is computed continuously from the incoming market data
feed, allowing the model to dynamically adjust its internal state and generate updated
trading probabilities at the native frequency of the market itself. To our knowledge,
this work represents the first empirical realization of an Ising-based model specifically
designed for, and validated on, asynchronous financial time series. Before proceeding
to the calibration of the Cointegrated Ising Spin Model, it is essential to formally estab-

lish the statistical properties of the underlying price series and confirm the existence of

14



a long-run equilibrium relationship, which is a fundamental prerequisite for the model.
The initial step in this preliminary analysis is to examine the descriptive statistics of

the processed, event-time data series, which are presented in Table [I}

Table 1: Summary Statistics for Futures Prices

Series Observations Mean ($) Std. Dev. Minimum ($) Maximum ($)
P (LCOc1) 16,318 76.78 0.359 75.61 77.50
PP (LCOC2) 16,318 7524 0.327 74.09 75.86

A Vector Error Correction Model (VECM) is estimated to confirm the presence of

a long-run equilibrium. The spread, or cointegrating residual, is defined as:
Sy =P = PP — e, (24)

where 7 is the cointegrating coefficient and p. is the long-run equilibrium level. The

VECM specification is given by:

APtA = OZA(Ptél - PYPtBil - ,uz) + (bABAPt]il + 6247 (25>
APP =ap(Pty —yPPy — 1) + ¢paAP2 + €/, (26)

where oy and ap represent the speeds of adjustment towards equilibrium, and ¢4p,
¢pa capture short-run dynamic effects.

The VECM estimation results, presented in Table [2| provide strong statistical ev-
idence for a stable cointegrating relationship. The estimated cointegrating coefficient
v = 1.02045 is highly significant and economically intuitive, reflecting a market in
weak contango where the forward price trades at a slight premium to the spot price,
consistent with storage and financing costs between contract expiries.

The adjustment speed parameters are both statistically significant and possess the
correct signs for a stable system. The negative sign of ay = —0.02574 indicates that
the front-month contract decreases in price to correct a positive disequilibrium, while
the positive sign of ap = 0.02011 shows the second-month contract increases. The
relative magnitudes suggest an asymmetric adjustment process where the more liquid
front-month contract bears approximately 56% of the total correction. The significant
short-run coefficients 45 = 0.414 and ¢4 = 0.337 reveal strong positive feedback and

momentum spillover between contracts, characteristic of cointegrated futures trading

15



Table 2: VECM Estimated Coefficients

T-Statistic p-value

Variable Coefficient Std. Error
Adjustment Speeds

QA -0.02574 0.00214

aB 0.02011 0.00225
Cointegrating Parameter

y 1.02045 0.00005
Short-Run Dynamics

baB 0.41446 0.00257

PBA 0.33730 0.00210

-12.01 0.0000
8.93 0.0000
20596.37  0.0000
161.15 0.0000
160.28 0.0000

in high-frequency environments.

Figure|[l|visually confirms the stationarity and mean-reverting behavior of the Error

Correction Term, providing the statistical foundation upon which the real-time trading

strategy is built.
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Figure 1: Time Series of the Estimated Error Correction Term (ECT). The series
represents the deviation from the long-run equilibrium, calculated as ECT, = P* —
1.02045 - PP. The plot visually confirms the stationary, mean-reverting nature of the

spread.

4.1 Agent-Based Model Calibration and Trading Performance

Following the establishment of cointegration, this study calibrates the agent-based

model using a performance-driven methodology specifically designed for real-time op-

eration. The model’s key innovation is a A-weighted arbitrage force that dynamically
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amplifies corrective pressure based on information staleness, making it uniquely suited
for asynchronous high-frequency environments where trade arrivals are irregular.
Model parameters are optimized using a hybrid objective function that balances

probabilistic forecast accuracy with raw trading success:

OHYB(@) =w OC—MSE(Q) + (1 - W) OTradeSuccess(@)a (27)

where Oc.vsg measures the conditional mean squared error between predicted and
realized reversals on trade events, and Otyagesuccess 1S the raw in-sample success rate.
Optimization employs a staged approach combining coarse grid search, simulated an-
nealing, and derivative-free local solvers.

The calibrated parameters, presented in Table[3] reveal a compelling market ecology
dominated by sophisticated arbitrage activity. The high proportion of contrarian agents
(Ne = 78%) suggests an environment rich with latent arbitrage capital poised to
enforce mean reversion. The nearly equal magnitudes of momentum strength (Jpmom =
34.225) and contrarian strength (o = 34.888) describe a high-tension equilibrium where

momentum-driven deviations meet aggressive corrective responses.

Table 3: Calibrated Parameters for the Agent-Based Model

Parameter Calibrated Value
Proportion of Contrarians, N¢ 78

Agent Determinism, Bresponse 5.387
Momentum Strength, Jyom 34.225
Contrarian Strength, « 34.888
Staleness Weight, ka 25.282

Sell Threshold, Oy 0.504

Buy Threshold, Oy 0.454

The high agent determinism (Bresponse = 5.387) indicates rational, purposeful re-
sponse to market signals. Crucially, the substantial staleness weight (ka = 25.282)
confirms the importance of the A-weighted arbitrage mechanism, revealing that infor-
mation staleness amplifies rather than degrades perceived arbitrage opportunities in
this market.

The model’s practical performance is evaluated through comprehensive backtesting.
Table [4] details the trading results, demonstrating the effectiveness of using the model’s

probabilistic output for real-time signal generation.
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Table 4: Trading Strategy Performance

Trade Execution Summary Performance Summary
Sell Trades 80 Overall Success Rate 74.65%
Successful Sells 63 Sell Success Rate 78.75%
Buy Trades 137 Buy Success Rate 72.26%
Successful Buys 99 Total Trades 217

The backtest yielded 217 trades with an overall success rate of 74.65%. The strat-
egy demonstrates nuanced state-dependent behavior: stricter sell conditions generated
fewer trades (80) but higher success (78.75%), while slightly more lenient buy thresh-
olds permitted more entries (137 trades) to capture violent snap-back reversals while
maintaining strong performance (72.26%). This asymmetry likely reflects day-specific

microstructural effects that the model successfully navigates.

4.2 Model Diagnostics and Dynamics

An examination of the key statistical series provides crucial insight into the model’s
inner workings and validates the trading strategy’s premises. Table 5| presents distribu-
tional properties of both the Error Correction Term and the model’s primary output,
the conditional probability of reversion (P (reversal)).

The ECT’s stationarity is confirmed by a runs test that decisively rejects the random
walk null hypothesis (Z-Score = -45.72, p < 0.01), establishing that spread deviations
are indeed temporary. The distribution of P;(reversal) is well-behaved and centered
(mean 0.3943, median 0.3682), indicating the model is discerning and does not perpet-
ually signal high reversion likelihood. The negative excess kurtosis (-1.326) suggests a
platykurtic distribution capable of generating a wide range of probability values.

The model’s effectiveness emerges most clearly in the distribution tails. A powerful
relationship exists where large, infrequent spread deviations trigger sharp increases in
reversion probability. When the ECT reaches its 95th percentile (deviation of +0.0874),
the reversal probability jumps to 0.8645—far exceeding trading thresholds. This rela-
tionship strengthens further at the 99th percentile. This dynamic is precisely what the
trading strategy exploits: lying in wait for high-conviction forecasts that occur only

during significant market dislocations (top 5-10% of spread deviations).
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Table 5: Descriptive Statistics: ECT and Reversal Probability

Metric ECT (Spread) Prob(Reversal)
Summary Statistics
Mean 0.0002 0.3943
Std. Dev. 0.0525 0.2905
Skewness 0.5127 0.2411
Kurtosis (excess) 0.3251 -1.3260
Minimum -0.2815 0.0000
Maximum 0.2238 0.9489
Percentiles
Ist -0.0946 0.0003
5th -0.0767 0.0109
25th -0.0377 0.1170
50th (Median) -0.0036 0.3682
75th 0.0293 0.6823
95th 0.0874 0.8645
99th 0.1510 0.8934
Stationarity Test
Runs Test (Z-Score) -45.72%* -

4.3 Robustness and Sensitivity Analysis

This study conducts targeted sensitivity analyses to validate the model’s architecture

against overfitting and establish parameter necessity.

1. Staleness Weight (ka): Reducing the calibrated value (ka = 25.282) by an
order of magnitude materially decreased both trade signals and success rate,
providing strong evidence that the A-weighted arbitrage force is a primary source

of predictive edge.

2. Agent Determinism (Sresponse): Systematically lowering Sresponse cOmpressed
the predictive distribution of P,(reversal) toward 0.5, eroding signal clarity and
reducing performance. This validates that strategy success depends on identifying

high-conviction moments requiring agent rationality.

3. Relative Balance of Forces (Jyom/a): Altering the near-equal ratio of momen-
tum to contrarian strength induced regime shifts. Higher ratios created trend-

dominated markets with lower success rates; lower ratios led to passive markets
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with insufficient trades. This demonstrates critical sensitivity to the precise com-

petitive balance between opposing market forces.

These analyses collectively demonstrate that the model’s performance arises not
from any single parameter but from the synergistic interplay of its core features: stal-
eness amplification, agent determinism, and the delicate balance between trend and
counter-trend forces. The architecture proves robust to perturbations, with perfor-
mance degradation following predictable patterns when key mechanisms are compro-

mised.

5 Discussion

The empirical results demonstrate the potential of the proposed Cointegrated Ising Spin
framework. Before concluding, it is useful to contextualize the model’s contribution by
comparing its core features to those of traditional financial and econophysical models,

and to discuss the study’s limitations and avenues for future research.

5.1 Model Novelty and Strategic Value

While the proposed framework builds upon concepts from econophysics, it introduces
key innovations that tailor it specifically to high-frequency statistical arbitrage, offering
distinct advantages over traditional approaches. This model is designed as a real-time
signal generator for non-directional arbitrage strategies. Its core logic is not
limited to futures calendar spreads but can be applied to any pair of cointegrated
assets—such as cross-listed equities, related ETFs, or inter-commodity spreads—that
exhibit strong mean-reverting forces and are traded asynchronously at high frequencies.

The model’s novelty can be summarized in three key departures from the standard

approaches in both econometrics and agent-based modeling:

1. Endogenous, Econometrically-Grounded Arbitrage Force: Traditional
agent-based and Ising models (e.g., [2, 12]) often rely on abstract or exogenous
fundamental values, deriving agent decisions from forces like local herding and a
global contrarian field. In contrast, the model’s primary driver is the novel ‘Pull-
Term’. This term is an endogenous force derived directly from an empirically

estimated, macro-level econometric relationship—the cointegration vector. This
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elegantly anchors micro-level agent behavior to an observable, mean-reverting
macro-level equilibrium, bridging the gap between econometrics and econophysics

and providing a theoretically sound foundation for the trading signals.

2. Explicit Modeling and Exploitation of Asynchronous Time: Standard
time-series models and Ising models struggle with asynchronous data, often as-
suming synchronous time steps (¢,¢t+ 1,...). The model’s key innovation is how
it operationalizes a A-weighted arbitrage force. By explicitly incorporating the
real-world time elapsed since the last trade (A;) for each asset, this framework
turns asynchronicity from a data problem into a source of alpha. This dynamic
weighting of the corrective force yields a more accurate, real-time response to
market disequilibrium that is uniquely suited for generating signals from tick-

level data.

3. A Prescriptive, Probabilistic Output: The output of many quantitative
models is a latent state (e.g., aggregate magnetization) or a binary signal. The
model’s primary output is a prescriptive, conditional probability of mean
reversion. By aggregating agent decisions, the model directly calculates an
instantaneous, actionable probability that the spread will converge. This trans-
forms the model from a purely descriptive tool into a sophisticated, probabilistic
signal generator, allowing for the construction of more nuanced, risk-aware strate-

gies that move beyond static threshold rules.

5.2 Limitations and Future Research

Despite the promising results, it is crucial to acknowledge the limitations of this study,
which provide clear avenues for future work.

First, the model parameters were calibrated and backtested on a historical dataset
from a single trading day. This approach, while useful for demonstrating the frame-
work’s internal consistency and potential, carries a significant risk of overfitting. A
crucial next step is to perform rigorous out-of-sample validation by training the model
on data from one period and testing its performance on subsequent, unseen data to
assess its true predictive power and robustness across different market regimes.

Second, the backtest was conducted without explicit transaction costs. In a
live market, the bid-ask spread, commissions, and potential slippage represent direct

and unavoidable costs that would reduce the reported profitability. A comprehensive
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assessment requires incorporating these frictions, though the highly liquid nature of the
Brent futures market provides a robust foundation for the model’s initial validation.

Third, the small trade sample (217 trades) generated in the one-day backtest is a
limitation for conclusively validating a high-frequency strategy. A longer testing period
generating a larger number of trades is required to confirm the statistical significance
and robustness of the performance.

Finally, the framework itself has scope for improvement. Parameter calibration
could be enhanced with more dynamic optimization methods to better adapt to chang-
ing market conditions. The objective function could also be modified to maximize risk-
adjusted metrics like the Sharpe ratio instead of raw success rates. Further extensions
could involve endogenizing the trade arrival process or incorporating a wider variety of

heterogeneous agent types with different memory lengths and risk tolerances.

6 Conclusions

This study demonstrates that combining econometric cointegration with agent-based
modeling can yield a powerful, probabilistic trading framework for asynchronous mar-
kets. The Cointegrated Ising Spin Model integrates the statistical structure of the
VECM with the behavioral microdynamics of agents, translating macro-level error
correction into real-time, probability-based trading signals. Applied to Brent crude oil
futures, the model achieved a 74.65% predictive success rate, validating the economic
relevance of the A-weighted arbitrage mechanism.

This paper has addressed the significant challenge of modeling and trading coin-
tegrated, asynchronously traded assets, with a direct application to Brent crude oil
futures spreads. We proposed a novel hybrid framework that integrates the macro-level
dynamics of a Vector Error Correction Model (VECM) with the micro-foundations of
an agent-based Ising spin model. The key innovation is the introduction of a ‘PullTerm'
into the agent decision-making process, ...which is driven by a A-weighted arbitrage
force that explicitly accounts for information staleness.

The parameters of the agent-based model were estimated through a direct, performance-
driven optimization of a probability-based trading strategy, aligning the model’s cal-
ibration with its practical goal. The in-sample backtest of the optimized strategy
yielded a strong overall success rate of 74.65%, highlighting the potential of using such

hybrid agent-based models to move beyond static-threshold arbitrage strategies toward
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more dynamic, probability-driven approaches.

By calibrating the Cointegrated Ising Spin Model on historical tick data and sub-
sequently feeding it with live market quotes, the proposed framework establishes a
deployable architecture for automated spread trading. This dual design—training of-
fline and executing online—extends the conventional boundaries of statistical arbitrage
by transforming an econometric model into an adaptive, continuously operating deci-
sion system. In doing so, it enables real-time monitoring and signal generation in
markets where asynchronicity and information staleness are inherent features of price
formation.

Overall, this study demonstrates that bridging statistical time-series modeling with
agent-based simulation yields a robust and versatile framework for capturing the mi-
crodynamics of spread reversion. The methodology provides a practical blueprint for
next-generation, non-directional arbitrage strategies capable of functioning in live trad-
ing environments. Its flexibility allows seamless adaptation across asset classes charac-
terized by liquidity, asynchronous price discovery, and mean-reverting behavior, paving
the way for a new class of real-time, probabilistic trading systems grounded in sound

econometric principles.
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