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A GARCH Option Pricing Model in Incomplete Markets

Abstract

We propose a new method for pricing options based on GARCH models with filtered histor-

ical innovations. In an incomplete market framework we allow for different distributions of the

historical and the pricing return dynamics enhancing the model flexibility to fit market option

prices. An extensive empirical analysis based on S&P 500 index options shows that our model

outperforms other competing GARCH pricing models and ad hoc Black-Scholes models. Using

our GARCH model and a nonparametric approach we obtain decreasing state price densities per

unit probability as suggested by economic theory, validating our GARCH pricing model. Implied

volatility smiles appear to be explained by the negative asymmetry of the filtered historical inno-

vations. A new simplified delta hedging scheme is presented based on conditions usually found

in option markets, namely the local homogeneity of the pricing function. We provide empirical

evidence and we quantify the deterioration of the delta hedging in the presence of large volatility

shocks.

Keywords: Option pricing, GARCH model, state price density, delta hedging, Monte Carlo simu-

lation.

JEL Classification: G13.
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Introduction

There is a general consensus that asset returns exhibit variances that change through time. GARCH

models are a popular choice to model these changing variances—as well documented in the financial

literature. However the success of GARCH in modeling historical return variances only partially

extends to option pricing. Duan (1995), Heston (1993a) and Heston and Nandi (2000) among others

assume normal return innovations and parametric risk premiums to derive GARCH pricing models.

These assumptions allow to consider in a unified framework the historical and the pricing (or risk

neutral) asset return dynamics. Unfortunately, they also imply that, up to the risk premium, the

conditional volatility of the historical and the pricing distributions be governed by the same model

parameters. Empirical studies for instance by Chernov and Ghysels (2000) and Christoffersen and

Jacobs (2004) show that this restriction leads to rather poor pricing and hedging performances. The

reason is that a risk neutral investor would price the option as if the distribution of its return had a

different drift but unchanged volatility. This is certainly true in the Black and Scholes (1973) theory

and the related option pricing models. However, Black and Scholes derived the above property under

very special assumptions.1 Changing volatility in real markets makes the perfect replication argument

of Black and Scholes invalid. Markets are then incomplete in the sense that perfect replication of

contingent claims using only the underlying asset and a riskless bond is impossible. Of course markets

become complete if a sufficient, (possibly infinite), number of contingent claims are available. In this

case a well-defined pricing density exists.2

In the markets we consider the volatility of the pricing process is different from the historical

volatility of the asset process. This occurs because investors will set state prices to reflect their ag-

gregate preferences. Our model differs from other models in the financial literature because we rely

on market incompleteness to allow for a pricing distribution different in shape from the historical dis-

tribution. It is possible then to calibrate the pricing process directly on option prices. Although this

may appear to be a purely fitting exercise, involving no constraint beyond the absence of arbitrage,

the stability of the pricing process over time and across maturities imposes substantial parameter

restrictions. Furthermore, economic theory imposes further restrictions on investor preferences for

aggregate wealth in different states, such as decreasing intertemporal marginal rate of substitutions.

Pricing models are economically validated when these restrictions are satisfied.
1Frictionless markets, continuous trading, unlimited riskless borrowing and lending opportunities at the same con-

stant rate, geometric Brownian motion with a known and constant diffusion coefficient for the underlying asset.
2For instance Jarrow and Madan (1995) investigate the hedging of systematic jumps in asset returns when additional

assets are introduced in the market.
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An interesting result concerns hedging performance. The delta hedging strategy based on the

Black-Scholes model calibrated at the implied volatility cannot be substantially improved using any

alternative pricing model. This result is due to the fact that deltas from the Black-Scholes model

can be derived applying directly the (local first degree) homogeneity of option prices with respect

to asset and strike prices, without using the Black-Scholes formula. Hence hedge ratios from the

Black-Scholes model calibrated at the implied volatility are the “correct” hedge ratios unless a very

strong departure from local homogeneity of the pricing function occurs. This is not the case for the

continuous, almost linear volatility smiles commonly observed on option markets. In practice, for

regular calls and puts, this is the case only for the asset price being equal to the strike price one

instant before maturity. In summary, although it may be argued that calibrating the Black-Scholes

model at each implied volatility does not give a model of option pricing, the hedging performance

of this common procedure—as often implemented by practitioners in the financial industry—can be

very accurate. Barone-Adesi and Elliott (2006) further investigate the computation of the hedge

ratios under similar assumptions.

This paper presents three main contributions that are the new GARCH pricing model, the analysis

of aggregate intertemporal marginal rate of substitutions and the new simplified hedging scheme.

Importantly, an in depth empirical study underlies all the previous analysis. Our GARCH pricing

model relies on the Glosten, Jagannathan, and Runkle (1993) asymmetric volatility model driven by

empirical GARCH innovations. We perform an extensive empirical analysis using European options

on the S&P 500 Index from January 2002 to December 2004. We compare in- and out-of-sample

pricing performances of our approach, the GARCH pricing models of Heston and Nandi (2000) and

Christoffersen, Heston, and Jacobs (2006) and the benchmark model of Dumas, Fleming, and Whaley

(1998). The calibration exercise is particularly extended as all the pricing models are calibrated each

week in our sample. Interestingly, we find that our GARCH pricing model outperforms all the other

pricing methods both in- and out-of-sample in almost all comparisons. To economically validate our

approach we estimate the state price densities per unit probability (or the aggregate intertemporal

marginal rate of substitutions) for all the available maturities in our sample. In contrast to previous

studies, (such as Jackwerth (2000) and Rosenberg and Engle (2002)), we undertake a much more

extensive empirical analysis and more importantly our estimates of the state price densities per unit

probability tend to be monotonically decreasing as predicted by economic theory. Finally, we study

the hedging performance of the new simplified scheme and we provide empirical evidence that a

major deterioration of the delta hedging occurs in the presence of large volatility shocks.

The financial literature on GARCH option pricing is quite large and in the following we provide
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only a partial overview. Heston and Nandi (2000) derive a closed-form pricing formula assuming

normal return innovations, a linear risk premium and the same GARCH parameters for the historical

and the pricing asset processes. In our pricing model we rely on Monte Carlo simulations and then

we can relax their assumptions. Duan (1996) calibrates a GARCH model to the FTSE 100 index

options assuming Gaussian innovations and the locally risk neutral valuation relationship, that is

the daily conditional variances under the historical and the pricing measures are equal. Engle and

Mustafa (1992) propose a similar method calibrating a GARCH model to S&P 500 index options

to investigate the persistence of volatility shocks under the historical and the pricing distributions.

Recent studies on GARCH pricing models include for instance Christoffersen, Heston, and Jacobs

(2006) and Christoffersen, Jacobs, and Wang (2006).

The first section of this paper develops our theoretical framework, the second one presents our em-

pirical findings on option pricing. The third section discusses hedging and the fourth one summarizes

our conclusions.

1 Theoretical framework

1.1 State price densities and derivative prices

The relation between state price density (SPD), asset price dynamic and the representative agent’s

preferences is now well understood, but for completeness and to develop the notation we provide a

brief summary.

In a dynamic equilibrium model (such as Rubinstein (1976b) or Lucas (1978)), the price of any

asset equals the expected present value of its future payoff, where the discounting is calculated using

the riskless rate r and the expectation is taken with respect to the marginal rate of substitution

weighted probability density function (PDF) of the payoffs. This PDF is called the SPD or risk

neutral PDF (Cox and Ross (1976)) or equivalent martingale measure (see Harrison and Kreps

(1979)) or pricing density. Formally, the current price ψt of an asset with a single payoff ψT at date

T = t + τ is

ψt = EQ[ψT e−rτ |Ft] = e−rτ

∫ ∞

0
ψT (ST ) qt,T (ST ) dST , (1)

where ST is a state variable of the economy (e.g., aggregate consumption), Ft is the available infor-

mation to the agent up to and including time t, qt,T is the SPD (the PDF under the risk neutral

measure Q) at time t for payoffs liquidated at date T , and EQ is the expectation under Q. The
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security price ψt can be equivalently represented as

ψt = EP[ψT Mt,T |Ft] =
∫ ∞

0
ψT (ST ) Mt,T (ST ) pt,T (ST ) dST , (2)

where Mt,T is the SPD per unit probability3 and pt,T is the PDF under the historical or objective

measure P at time t for payoffs liquidated at date T . In a continuum of states, the SPD defines the

Arrow-Debreu (Arrow (1964) and Debreu (1959)) security price, which gives for each state of the

economy, s, the price Mt,T (s) pt,T (s) of a security paying one dollar at time T if the future state

ST falls between s and s + ds. The SPD per unit probability Mt,T (s) is then the market price of

a security paying 1/pt,T (s) dollars in the previous scenario and the security has an expected rate

of return equals to 1/Mt,T (s) − 1 under the historical measure P. These expected rate of returns

depend on the current state of the economy summarized in the information set Ft.

Equations (2) shows the high information content of the SPD per unit probability. This equation

can be used to determine equilibrium asset prices given historical asset price dynamics and agent

preferences, or to infer the agents characteristics given the observed market asset prices. For instance,

in a Lucas (1978) economy, the state variable ST is the aggregate consumption CT and Mt,T =

U ′(CT )/U ′(Ct), that is the intertemporal marginal rate of substitution. Using an unconditional

version of equation (2) and the aggregate consumption CT as state variable, Hansen and Singleton

(1982) and Hansen and Singleton (1983) estimate the risk aversion and the time preference of the

representative agent, hence identifying the SPD per unit probability.

In general the SPD per unit probability will depend not only on current and future consumptions

but also on all variables that affect marginal utility, such as past consumptions or equity market

returns; see for instance the discussion in Rosenberg and Engle (2002, Section 2.1) and the references

therein. Furthermore, due to the well-known measurement problems and the low temporal frequency

of aggregate consumption data,4 several researchers have proposed alternative methods to estimate

Mt,T substituting consumption data with market data. For instance, Rosenberg and Engle (2002)

project Mt,T onto the payoffs of traded assets ψT , avoiding the issue of specifying the state variables

in the SPD per unit probability. Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000) adopt similar

approaches projecting Mt,T onto equity return states using S&P 500 index option prices. They

assume that investors have a finite horizon and that the equity index level equals the aggregate
3The SPD per unit probability is also known as asset pricing kernel (Rosenberg and Engle (2002)) or stochastic

discount factor; see Campbell, Lo, and MacKinlay (1997) and Cochrane (2001) for comprehensive surveys of its role

in asset pricing, and Ross (1978), Harrison and Kreps (1979), Hansen and Richard (1987), Hansen and Jagannathan

(1991) for related works.
4For discussions of these issues see for example Ferson and Harvey (1992), Wilcox (1992), and Slesnick (1998).
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wealth. In this paper we also make the same assumptions.5 Our goal will be to develop a pricing

model for the derivative securities, ψT , that accounts for the most important features of equity

returns. The model will be evaluated on the basis of statistical measures (derived by the mispricing

of existing securities) as well as economic measures (whether or not the corresponding SPD per unit

probability satisfies minimum economic criteria).

1.2 Asset price dynamics

In this section we develop the stochastic volatility model that captures the most important features

of the equity return process. This model will be used in the option pricing analysis.

1.2.1 Historical return dynamics

A substantial amount of empirical evidence suggest that equity return volatility is stochastic and

mean reverting, return volatility responds asymmetrically to positive and negative returns, and return

innovations are non-normal; see for instance Ghysels, Harvey, and Renault (1996). In a discrete time

setting, the stochastic volatility is often modeled using extensions of the autoregressive conditional

heteroscedasticity (ARCH) model proposed by Engle (1982). Comprehensive surveys of the ARCH

and related models are Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle, and Nelson (1994).

In a continuous time setting, stochastic volatility diffusion model are commonly used; surveys of this

literature are for instance Ghysels, Harvey, and Renault (1996) and Shephard (1996).

To model the equity index return we use an asymmetric GARCH specification with an empirical

innovation density. The GARCH model of Bollerslev (1986) accounts for stochastic, mean reverting

volatility dynamics. The asymmetry term is based on Glosten, Jagannathan, and Runkle (1993)

(GJR). The empirical innovation density captures potential non-normalities in the true innovation

density and we refer to this approach as the filtering historical simulation (FHS) method. Barone-

Adesi, Bourgoin, and Giannopoulos (1998) introduce the FHS method to compute portfolio risk

measures and Engle and Gonzalez-Rivera (1991) investigate the theoretical properties of the GARCH

model.

Under the objective or historical measure P the asymmetric GJR GARCH model is

log(St/St−1) = µ + εt

σ2
t = ω + βσ2

t−1 + αε2
t−1 + γIt−1ε

2
t−1,

(3)

5See for example Rubinstein (1976a) and Brown and Gibbons (1985) for the conditions under which the SPD per

unit probability with consumption growth rate as state variable is equivalent to a SPD per unit probability with equity

index return as state variable.
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where εt = σt zt, zt ∼ f(0, 1) and It−1 = 1, when εt−1 < 0 and It−1 = 0, otherwise. When

γ > 0 the model accounts for the leverage effect,6 that is bad news (εt−1 < 0) rises the future

volatility more than good news (εt−1 ≥ 0) of the same absolute magnitude. The constant expected

return µ of the log-return is not usually compatible with time varying state prices, but it is unlikely

that it will strongly affect the estimation of state prices. Hence, equation (3) can be viewed as

an approximation. The scaled return innovation zt is drawn from the empirical density function f

that is obtained dividing each estimated return innovations ε̂t by its estimated conditional volatility

σ̂t. This set of estimated scaled innovations gives an empirical density function that incorporates

excess skewness, kurtosis and other extreme return behaviors that are not captured in a normal

density. We estimate the model parameters using maximum likelihood with a normal innovation

density. Bollerslev and Wooldridge (1992) show that under some conditions this technique provides

consistent parameter estimates even when the true innovation density f is non-normal. In the last

case the parameter estimates are pseudo maximum likelihood (PML) estimates.

The GARCH literature provides several specifications for the conditional volatility and we could

adopt a different GARCH model in this study. We favor the asymmetric GARCH model (3) because

of its flexibility for instance in capturing the leverage effect. Engle and Ng (1993) document that

the asymmetric GARCH model provides an adequate modeling of the news impact curve and it

outperforms for example the EGARCH model of Nelson (1991). Furthermore, Rosenberg and Engle

(2002) also investigate the asymmetric GARCH model (3) using S&P 500 index returns as in our

empirical application and they find that the model performs well in describing the returns dynamics.

In Section 2 we will undertake an extensive empirical analysis involving several years of S&P 500 index

returns and in some instances there might be other GARCH models outperforming the asymmetric

GARCH model (3). However, for comparison purposes we always maintain the GJR model in our

study.

1.2.2 Pricing return dynamics

The asset return model (3) is specified under the historical measure P and cannot be directly used

to price options. One possibility is to specify the SPD per unit probability (i.e., the change of
6The name leverage effect was introduced by Black (1976) who suggested that a large negative return increases the

financial and operating leverage, and rises equity return volatility; see also Christie (1982). Campbell and Hentschel

(1992) suggested an alternative explanation based on the market risk premium and volatility feedback effects; see also

the more recent discussion by Bekaert and Wu (2000). We shall use the name leverage effect as it is commonly used

by researchers when referring to the asymmetric reaction of volatility to positive and negative return innovations.
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measure from P to Q) and to recover the risk neutral asset dynamics.7 This approach is particularly

attractive because the GARCH parameters θ = {ω, β, α, γ} can be easily estimated using historical

asset returns and used for pricing purposes. However, several studies such as Chernov and Ghysels

(2000) and Christoffersen and Jacobs (2004) show that this approach leads to a rather poor pricing

performance and it is largely dominated by option pricing models estimated only using option prices.8

This negative result is mainly due to the difficulties of specifying a correct SPD per unit probability,

that in general has time varying level and shape; see for instance Rosenberg and Engle (2002).

We do not attempt to directly specify the change of measure from P to Q, and we propose to

approximate it by calibrating a new set of risk neutral GARCH parameter θ∗ = {ω∗, β∗, α∗, γ∗}
directly on market option prices. The parameter θ∗ can possibly be different from the GARCH

parameter θ under P, and this difference characterizes the SPD per unit probability. Hence, under

the risk neutral measure Q the asset return dynamic is approximated by an asymmetric GARCH

model with different parameters,

log(St/St−1) = µ∗ + εt

σ2
t = ω∗ + β∗σ2

t−1 + α∗ε2
t−1 + γ∗It−1ε

2
t−1,

(4)

where the risk neutral drift µ∗ ensures that the asset return equals the risk free rate, that is

EQ[St/St−1|Ft−1] = er. The distribution of the scaled innovation z could also be changed to better

approximate the change of measure from P to Q. We retain the same historical distribution of the

innovation process under the risk neutral measure Q because in our empirical application the para-

meter change from θ to θ∗ already provides a flexible change of measure to fit well market options

prices. More importantly, we will investigate whether or not the induced SPD per unit probability is

economically sustainable and satisfies the usual economic restrictions on the level and shape. In that

case, it will be economically validated. The SPD per unit probability is estimated by discounting

the ratio of the historical and pricing densities derived from the two different GARCH models, that

is Mt,t+τ = e−rτqt,t+τ/pt,t+τ . No a priori model is imposed on Mt,t+τ and its estimate will provide

a substantial amount of information on the aggregate investor preferences.
7For instance Rubinstein (1976b) and Brennan (1979) originally used log-normal distributions and power utili-

ties to characterize the SPD per unit probability, while Heston (1993b) and Stutzer (1996) combine log-exponential

distributions with power utility and exponential utility for the same purpose.
8Although Chernov and Ghysels (2000) find that the pricing of long term options in the Heston (1993a) model

could be improved using security and option contracts jointly and Christoffersen and Jacobs (2004) find that the out-

of-sample performances of certain GARCH models estimated on historical data are not so inferior to the ones of the

same GARCH models calibrated only on option data.
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If the return innovation z was to be normal, the SPD per unit probability would be restricted as

in Duan (1995, Lemma A.1) because both historical and risk neutral distributions would be normal

and the risk neutral asset returns could not follow a GARCH process with different parameters.9 We

remark that our pricing model does not rely on normal innovations, but on non-normal empirical

innovations. Hence in the spirit of Chernov and Ghysels (2000), we combine the historical asset

returns given by the FHS innovations {zt} and the cross sectional market option prices to infer the

option pricing model. We recall that the innovation process {zt} is not transformed and we exploit

the flexibility of θ∗ to compensate for that.

The previously mentioned calibration approach is usually undertaken in the option pricing lit-

erature; see for instance Engle and Mustafa (1992), Duan (1996), Heston and Nandi (2000), and

Christoffersen, Jacobs, and Wang (2006).10 In contrast to the previous papers however we consider

wider moneyness and/or maturity ranges for option prices and we undertake a more extensive cali-

bration exercise, calibrating our GARCH pricing model and the competing models on each week for

the three years in our sample. Furthermore, we estimate the SPD per unit probability for all the

available maturities and we perform an hedging analysis based on our GARCH pricing model.

Under the GARCH model the distribution of temporally aggregated asset returns cannot be

derived analytically. Hence, for any given horizon T = t + τ , the SPD is estimated using the FHS

method and the calibrated pricing GARCH parameters. The τ periods return density is estimated

by simulating several τ periods return paths. A return path is simulated by drawing an estimated

past innovation z1,t+1, updating the conditional variance σ2
t+1, drawing a second innovation z2,t+2,

updating the conditional variance σ2
t+2, and so on up to day T . The τ periods simulated return

is ST /St = exp(τµ∗ +
∑τ

i=1 σt+i zi,t+i). To reduce the Monte Carlo variance we use the empirical

martingale simulation method proposed by Duan and Simonato (1998), where the simulated asset

price paths are re-scaled to ensure that the risk neutral expectation of the underlying asset equals

its forward price. Denoting by S
(l)
T the simulated asset price at time T in the l-th sample path, the

price of a call option at time t with strike K and maturity T is given by e−rτ
∑L

l=1 max(S(l)
T −K, 0),

where L is the total number of simulated sample paths. Put option prices are similarly computed.
9We are grateful to the referee for pointing this out.

10See also Amin and Ng (1997) for related work on interest rate models.
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2 Empirical analysis

2.1 The data

To test our model we use European options on the S&P 500 index (symbol: SPX). The market for

these options is one of the most active index options market in the world. Expiration months are the

three near-term months and three additional months from the March, June, September, December,

quarterly cycle. Strike price intervals are 5 and 25 points. The options are European and have no

wild card features. SPX options can be hedged using the active market on the S&P 500 futures.

Consequently, these options have been the focus of many empirical investigations, including Aı̈t-

Sahalia and Lo (1998), Chernov and Ghysels (2000), Heston and Nandi (2000), and Carr, Geman,

Madan, and Yor (2003).

We consider closing prices of the out-of-the-money (OTM) put and call SPX options for each

Wednesday11 from January 2, 2002 to December 29, 2004. Option data and all the other necessary

data are downloaded from OptionMetrics. The average of bid and ask prices are taken as option

prices, and options with time to maturity less than 10 days or more than 360 days, implied volatility

larger than 70%, or prices less than $0.05 are discarded, which yields a sample of 29,211 observations.

Put and call options are equally represented in the sample, that is 50.7% and 49.3%, respectively. In-

the-money options are not actively traded compared to at-the-money and out-of-the-money options.

For instance, the daily volume for out-of-the-money put options is usually several times as large as the

volume for in-the-money puts. This phenomenon started after the October 1987 crash and reflects the

strong demand by portfolio managers for protective puts—inducing the well-known implied volatility

smile. Using only out-of-the-money options avoids potential issues associated to liquidity problems.

Moreover, some empirical studies investigate model pricing performances separately using calls and

puts, and the empirical findings based on calls and puts are rather similar; see, for instance, Bakshi,

Cao, and Chen (1997) and Dumas, Fleming, and Whaley (1998).

Using the term structure of default-free interest rates, the riskless interest rate for each given

maturity τ is obtained by linearly interpolating the two interest rates for maturities straddling τ .

This procedure is repeated for each contract and each day in our sample.

We divide the option data into several categories according to either time to maturity or money-

ness, m, defined as the ratio of the strike price over the asset price, K/S. A put option is said to be

deep out-of-the-money if its moneyness m < 0.85; out-of-the-money if 0.85 ≤ m < 1; a call option
11In our sample all but two days are Wednesdays. In those cases we take the subsequent trading day, but for

simplicity we refer to all days as Wednesdays.
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is said to be out-of-the-money if 1 ≤ m < 1.15; and deep out-of-the-money if m ≥ 1.15. An option

contract can be classified, by the time to maturity, as short maturity (< 60 days); medium maturity

(60–160 days); and long maturity (> 160 days).

Table 1 describes the 29,211 option prices, the implied volatilities, and the bid-ask spreads used

in our empirical analysis. The average put (call) prices range from $0.77 ($0.34) for short maturity,

deep OTM options to $38.80 ($34.82) for long maturity, OTM options. OTM put and call options

account for, respectively, 27% and 25% of the total sample. Short and long maturity options account

for, respectively, 33% and 36% of the total sample. The table also shows the volatility smile and the

corresponding term structure. For each given set of maturities the smile across moneyness is evident.

When the time to maturity increases the smile tends to become flatter and the bid-ask spreads tend

to narrow. The number of options on each Wednesday is on average 186.1, with a standard deviation

of 22.3, a minimum of 142 and a maximum of 237 option contracts.

During the sample period, the S&P 500 index ranges from a minimum of $776.8 to a maximum

of $1,213.5 with an average level of $1,029.5. The average daily log-return is quite close to zero

(6.6 × 10−5), the standard deviation is 22.98% on an annual base,12 and skewness and kurtosis are

0.25 and 4.98, respectively.

2.2 Calibration of the GARCH model with the FHS method

The pricing GARCH parameter θ∗ = {ω∗, β∗, α∗, γ∗} are determined by calibrating GARCH option

prices computed with the FHS method on the cross section of SPX out-of-the-money option prices.

The procedure is in two steps. For each Wednesday t, in the first step the GARCH model (3) is

estimated using n historical log-returns of the underlying asset up to time t, {log(Sj/Sj−1), j =

1 − n + t, 2 − n + t, . . . , t}. The scaled innovations {zj = εj/σj} are also estimated. In the second

step, the pricing GARCH parameters θ∗ are obtained by minimizing the mean square error criterion

function
∑Nt

i=1 e(Ki, Ti)2, where e(Ki, Ti) is the difference between the GARCH model price and the

market price of the SPX option i with strike Ki and maturity Ti.13 Nt is the number of SPX out-of-

the-money options on a given Wednesday t. The GARCH option price is computed using the FHS
12The standard deviation of the S&P 500 log-returns is approximately in line with the GARCH unconditional

volatility estimates reported in Tables 2 and 3.
13To minimize the criterion function we use the Nelder-Mead simplex direct search method implemented in the

Matlab function fminsearch, which does not require the computation of gradients. To ensure the convergence of the

calibration algorithm, the FHS innovations used to simulate the GARCH sample paths are kept fix across all the

iterations of the algorithm. Starting values for the pricing parameters θ∗ are the GARCH parameters estimated under

the historical measure P and obtained in the first step of the FHS calibration method.
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method as described in the previous section and the current conditional volatility σt+1 is obtained

using historical GARCH estimates and asset returns. Under a theoretical viewpoint this approach

is motivated by a limiting argument, that is the SPD per unit probability Mt,t+τ tends to one, when

τ goes to zero. Then the current historical and risk neutral volatilities coincide. Under a practical

viewpoint, this approach reduces the calibration time because σt+1 is kept fix at each iteration of

the calibration algorithm.

In the GARCH framework the conditional variance σ2
t+1 is readily computed using the historical

asset returns and the historical GARCH parameter as in our approach or the risk neutral GARCH

parameter as in Heston and Nandi (2000) or Christoffersen, Heston, and Jacobs (2006). This is an

important advantage of the GARCH pricing models over continuous time stochastic volatility models

where the current instantaneous volatility is not observable and is usually calibrated to option prices

hence increasing the computational burden; see for instance Bakshi, Cao, and Chen (1997).

2.3 Benchmark model and alternative GARCH pricing models

In the empirical analysis we compare our option pricing model to three competing approaches,

that are a benchmark model and the GARCH pricing models of Heston and Nandi (2000) and

Christoffersen, Heston, and Jacobs (2006).

We follow Dumas, Fleming, and Whaley (1998) to define the benchmark model. For each Wednes-

day t the implied volatilities of the cross section of the SPX options are smoothed across strikes and

time to maturities by fitting the following function

σbs = a0 + a1K + a2K
2 + a3τ + a4τ

2 + a5Kτ, (5)

where σbs is the Black-Scholes implied volatility for an option with strike K and time to maturity τ .

Option prices are then obtained by plugging in the Black-Scholes formula the fitted implied volatil-

ities. The equation (5) is estimated every Wednesday using ordinary least squares. This approach

is called the ad hoc Black-Scholes model. Although theoretically inconsistent, ad hoc Black-Scholes

methods are routinely used in the option pricing industry and they represent a more challenging

benchmark than simple Black-Scholes models (with a single implied volatility for the whole cross

section of options), because they allow for different implied volatilities to price different options.

Indeed, Dumas, Fleming, and Whaley (1998) show that this approach outperforms the deterministic

volatility function option valuation model introduced by Derman and Kani (1994), Dupire (1994),

and Rubinstein (1994).14

14See for instance Buraschi and Jackwerth (2001) for further discussions on this point.
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We also consider the GARCH model with Gaussian innovations of Heston and Nandi (2000)

(HN, in brief) and the GARCH model with Inverse Gaussian innovations of Christoffersen, Heston,

and Jacobs (2006) (IG, in brief). Heston and Nandi (2000) apply the inversion of the characteristic

function technique introduced by Heston (1993a) to derive a closed form expression for European

option prices under GARCH models with Gaussian innovations. To capture the well documented

negative asymmetry in GARCH innovations, Christoffersen, Heston, and Jacobs (2006) extend the

previous technique to GARCH models with possibly negative skewed inverse Gaussian innovation.

Here we only recall the pricing formulae and the specification of the two GARCH models. We refer

the reader to the corresponding papers for an in depth discussion of the models.

In the HN model, the asset return dynamic under the risk neutral measure Q is

log(St/St−1) = r − σ2
t /2 + σtzt

σ2
t = ω∗hn + β∗hnσ

2
t−1 + α∗hn(zt−1 − γ∗hnσt−1)2,

where zt is a standard Gaussian innovation, and in the IG model

log(St/St−1) = r + νσ2
t + η∗yt

σ2
t = w∗ + b∗ σ2

t−1 + c∗ yt−1 + a∗ σ4
t−1/yt−1,

where yt follows an inverse Gaussian distribution with parameter δt = σ2
t /η∗2. In both models, at

time t the call option Ct with strike price K and time to maturity τ is worth

Ct = e−rτζ∗(1)
(

1
2

+
1
π

∫ ∞

0
<

[
K−iφζ∗(iφ + 1)

iφζ∗(1)

]
dφ

)
−e−rτK

(
1
2

+
1
π

∫ ∞

0
<

[
K−iφζ∗(iφ)

iφ

]
dφ

)
, (6)

where <[·] denotes the real part of a complex number, ζ∗(φ) is the conditional moment generating

function at time t of the log-price XT = log(ST ),

ζ∗(φ) = EQ[eφXT |Ft] = Sφ
t eAt+Btσ2

t+1 .

The coefficients At’s and Bt’s are computed backward starting from the terminal condition AT =

BT = 0, and using the following recursive equations in the HN model

At = At+1 + φr + Bt+1ω
∗
hn −

1
2

log(1− 2α∗hnBt+1)

Bt = φ(γ∗hn −
1
2
)− γ∗2hn

2
+ β∗hnBt+1 +

1/2(φ− γ∗hn)
2

1− 2α∗hnBt+1

and in the IG model

At = At+1 + φr + Bt+1w
∗ − 1

2
log(1− 2a∗η∗4Bt+1)

Bt = Bt+1b
∗ + φν∗ + η∗−2 − η∗−2

√
(1− 2a∗η∗4Bt+1)(1− 2c∗Bt+1 − 2η∗φ).
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Similarly to GJR model with FHS method, on each Wednesday the HN and IG models will

be calibrated on the cross section of out-of-the-money SPX options by minimizing the dollar mean

square error of the pricing errors.

2.4 Implementing the GARCH pricing models

On each Wednesday, the GARCH model (3) is estimated using the PML approach and n = 3,500

historical log-returns, that is a sample size of approximately fourteen years. As an example Figure 1

shows the S&P 500 log-returns, the estimated GARCH volatility {σt} and the scaled innovations

{zt} up to a randomly chosen date, July 9, 2003. A sufficiently long sample size ensures that

the innovation distribution is adequately estimated. As a robustness check, we repeated all the

estimations and calibration exercises using a sample size n = 2,500. This point will be further

discussed in the next section. In the calibration of the GARCH pricing model (4), the SPD is

estimated by simulating L = 20,000 sample paths of the underling asset S with the FHS method and

the empirical martingale simulation approach as already discussed.15 The sample paths are simulated

in parallel running only one for-loop, on a standard Pentium IV processor with 1GB RAM. Hence

our Monte Carlo approach could be potentially inaccurate—as any other simulation method—but

the computation time is roughly the same as for the competing GARCH pricing models, where one

for-loop is needed to compute the coefficients At’s and Bt’s.16 Whether or not the Monte Carlo

option prices are sufficiently accurate will be reflected in the empirical pricing performance of our

approach. However, for almost all the deepest out-of-the-money options, at least 100 simulated paths

end “in-the-money”. Figure 2 shows the calibration of the GJR model with FHS method on the cross

section of out-of-the-money SPX options on July 9, 2003. Given the wide range of moneyness and

maturities considered, the calibration is quite satisfactory. An extensive empirical analysis will be

undertaken in the next section.

When computing option prices using the HN and IG models, the integrals in equation (6) are

computed numerically via discretization. We take as integration domain the interval (0, 100) and

we evaluate the integrand function on 5,000 equally spaced mid-points. Then, the integrals are

computed by averaging the function values over such an interval.17 As the moment generating
15For a few selected days we repeated the calibration exercises using L = 10,000 sample paths and we obtained very

similar pricing results. As the computation burden was still manageable we used L = 20,000 sample paths in our

empirical study.
16If the number of simulated sample paths L has to be increased and the computer memory is not enough then the

Monte Carlo approach is substantially slower than the competing GARCH approaches.
17The choice of the integration domain and the subinterval length are selected to match option prices on a few
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function ζ∗ does not depend on the strike K, for each given maturity τ , the coefficients At’s and

Bt’s need to be computed only once. Hence, following the previous numerical procedure a whole

cross section of option prices can be evaluated in a few seconds, largely reducing the calibration

time. As in Christoffersen, Heston, and Jacobs (2006), we set the riskless rate r = 0.05/365 in the

GARCH pricing formula. At each step of the calibration procedure, the conditional variances σ2

are initialized at the unconditional variance levels and then updated using the corresponding pricing

GARCH dynamics. The iterations are started 250 trading days before the first option date to allow

for the models to find the right conditional variances. Hence, in contrast to other stochastic volatility

models, such as the Heston (1993a) or the Bakshi, Cao, and Chen (1997) models, the pricing formula

(6) does not require the calibration of σt+1, simplifying our calibration procedure.

Christoffersen, Heston, and Jacobs (2006) show that the ν∗ parameter in the IG model is not

a free parameter, but it is constrained to ensure that the underlying asset earns the risk free rate

under the risk neutral measure Q. This observation explains why ν∗ does not appear in Table 3,

which shows the calibrated risk neutral parameters.

Finally, when implementing all the GARCH pricing formulae the dividends paid by the stocks

in the S&P 500 index have to be taken into account. The dividends are treated in different ways

in the option pricing literature; see for instance Aı̈t-Sahalia and Lo (1998) and Heston and Nandi

(2000) for two alternative procedures. We use the dividend yields downloaded from OptionMetrics

to compute an ex-dividend spot index level.

2.5 In-sample model comparison

For each Wednesday from January 2, 2002 to December 29, 2004 we estimate the GJR model using

the PML method and n = 3,500 past S&P 500 log-returns; see the first panel in Table 2. Hence these

estimates are under the historical measure P and are used in the first step of the FHS calibration

procedure. Then on each Wednesday we calibrate the GJR model with FHS innovations as well as

the HN and the IG models to the cross section of out-of-the-money SPX options. Table 3 shows

summary statistics for the GARCH parameters under the pricing measure Q. It is known that option

prices are more sensible for example to γ∗, γ∗hn, c∗ and η∗ than ω∗, ω∗hn and w∗. Indeed, the first set

of parameters turn out to be more stable than the second one, confirming the finding for instance

in Heston and Nandi (2000). As expected all the unconditional volatilities and the corresponding

persistency measures are more stable than the single parameters. For each Wednesday, we also

selected days computed using the Romberg’s numerical integration method over the interval (10−6, 200) with tolerance

10−4. Some differences between the two approaches are observed only for a few deepest out-of-the-money option prices.
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estimate the ad hoc Black-Scholes model (5) (BS, in brief) and Table 4 shows summary statistics for

the parameter estimates ai, i = 0, . . . , 5. The modest standard deviations of the parameter estimates

confirm that the implied volatility smile is a persistent phenomenon in SPX option market; see also

Table 1.

Following Dumas, Fleming, and Whaley (1998) and Heston and Nandi (2000), to assess the

quality of the fitted model, we report several measurements of fit. The dollar root mean square error

(RMSE) is the square root of the averaged squared deviations between the model prices and the

market prices; the mean absolute error (MAE) is the average of the absolute valuation error when

the model price is outside the bid-ask spread; the mean outside error (MOE) is the average of the

valuation error when the model price is outside the bid-ask spread; the minimum and maximum

pricing errors; the percentage of positive pricing errors; the average pricing error as a percentage of

the bid-ask spread.

For all pricing models Table 5 shows the in-sample pricing errors summarized by the previous

measurements of fit. Table 6 disaggregates the in-sample pricing errors by moneyness/maturity cate-

gories; see also the left plots in Figure 3 for the in-sample absolute mispricing. The overall conclusion

is that in terms of all measurements of fit our GJR model with FHS innovations outperforms all the

other pricing models. Occasionally, the GJR is somewhat outperformed by other models—for in-

stance in terms of RMSE by the HN model during 2003 in Table 5, or by the IG model for deep

out-of-the-money put options in Table 6—but its good pricing performance is remarkably stable.

Although the percentage of positive pricing errors in Table 5 for the HN and the IG models seem

to be too low, no systematic biases seem to emerge for the MOE’s in Table 6. Hence the previous

finding is due to slight underestimations of option prices. Finally, all the GARCH pricing models

always outperform the benchmark ad hoc Black-Scholes model, showing also some difficulties of the

BS model in fitting the whole cross section of option prices.

2.5.1 News impact curves

It might be surprising that the GJR with FHS innovations outperforms all the other GARCH pricing

models, sometimes even by a large extent. After all, also the HN and IG models can account for the

same stylized facts about the asset returns and volatility dynamics. To shed light on the differences

among the GARCH models we compute the news impact curve (NIC) introduced by Engle and Ng

(1993). The news impact curve measures the impact on the conditional variance σ2 of a shock in

the scaled innovation z, when the volatility is at its long run level. Figure 4 shows the NIC for

the GJR, HN and IG models using the pricing GARCH parameters in Table 3. The plots have to
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be carefully interpreted because the NIC is estimated using the average pricing parameter values

and to simplify the interpretation the vertical axis shows the conditional volatility rather than the

conditional variance. However, the findings are remarkably stable across the three years 2002, 2003

and 2004. In all GARCH models a negative shock z raises the volatility more than a positive shock of

equal magnitude, with some exceptions for the IG model. This effect is much stronger in GJR than

in the HN model. Moreover, the Gaussian innovation in the HN model very rarely will be below, say,

−3, while in the GJR model FHS innovations are often below this threshold; see for instance Figure 1.

The IG model can potentially react very strongly to negative shocks because the inverse Gaussian

innovation, yt, enters as 1/yt in the GARCH dynamics. Hence NIC tends to explode when yt goes to

zero, although the probability of this event depends on the degrees of freedom parameter δt = σ2
t /η∗2.

2.5.2 Comparison with the CGMY models

We also compare the pricing performance of the GJR model with FHS innovations to the CGMYSA

model proposed by Carr, Geman, Madan, and Yor (2003). Under their model the underlying asset

follows a mean corrected, exponential Lévy process time changed with a Cox, Ingersoll and Ross

process. Carr, Geman, Madan, and Yor (2003) calibrate the CGMYSA model to the out-of-the-

money SPX option prices with maturities between a month and a year for the dates January 12,

March 8, May 10, July 12, September 13 and November 8 for the year 2000. As an overall measure

of the quality of the calibration they propose the average absolute pricing error (APE) with respect

to the mean price,

APE =
∑Nt

i=1

∣∣Pmodel(Ki, Ti)− Pmarket(Ki, Ti)
∣∣

∑Nt
i=1 Pmarket(Ki, Ti)

, (7)

where Pmodel is either the GJR or the CGMYSA model price, and Pmarket is the SPX market

option price. The pricing performances of the GJR and CGMYSA models are reported in Table 7.

The average absolute pricing errors are somewhat in favor of the CGMYSA model, but this model

has nine parameters while the GJR model has four parameters. Carr, Geman, Madan, and Yor

(2003) also proposed more parsimonious (six parameters) models, namely the VGSA and NIGSA

models, which are, respectively, finite variation and infinite variation mean corrected, exponential

Lévy processes with infinite activity for the underlying asset. For the previous dates, in terms of the

APE measure, the GJR model outperforms the VGSA and NIGSA models in five and four out of six

cases, respectively. Finally, there is evidence that the GJR parameters tend to change from month

to month, but the pricing performance is quite stable especially in terms of the APE measure.
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2.6 Out-of-sample model comparison

Out-of-sample forecasting of option prices is an interesting challenge for any pricing method. It tests

not only the goodness-of-fit of the pricing formulae, but also whether or not the pricing methods

overfit the option prices in the in-sample period. For each Wednesday in our sample, in-sample

model estimates are used to price SPX options one week later (hence out-of-sample) using asset

prices, time to maturities and interest rates relevant on the next Wednesday.18 The conditional

variances are updated in our GARCH model with FHS innovations using the current historical

parameter estimates in Table 2, while in the other GARCH pricing models using the calibrated

pricing parameters in Table 3. The actual S&P 500 daily log-returns are also used to update all

conditional variances.

Table 8 shows the out-of-sample pricing errors summarized by the different measurements of fit

and Table 9 disaggregates the out-of-sample pricing errors by moneyness/maturity categories; see

also the right plots in Figure 3 for the out-of-sample absolute mispricing. Interestingly, the out-of-

sample results largely confirm the in-sample ones and overall our GJR model with FHS innovations

outperforms all the competing pricing models. Most of the out-of-sample measurements of fit share

the same patterns as the in-sample ones. Hence our GARCH pricing model is flexible enough to

achieve a good pricing performance, capturing the pricing mechanisms, without overfitting the data.

In all the previous in- and out-of-sample pricing exercises the GJR is estimated and calibrated

using n = 3,500 past S&P 500 log-returns. As a robustness check we repeat all the previous analysis

using n = 2,500. We obtain very similar results in terms of parameter estimations and calibrations

as well as pricing performances. Hence the corresponding tables are omitted, but are available from

the authors upon request.

The simulated sample paths used to calibrate the GJR GARCH pricing model contain a large

amount of information on the underlying and derivative securities. For instance, storing the simulated

sample paths a sensitivity analysis (such as computing delta and gamma) can be easily obtained

following the direct approach in Duan (1995) or the regression methodology approach in Longstaff and

Schwartz (2001). Hence our Monte Carlo calibration procedure can be computationally intensive—

like any other calibration approach—but the resulting amount of information could balance the

computational costs. Moreover, the previous out-of-sample results show that for pricing purposes

our GARCH pricing model does not need to be recalibrated every day. Then the whole cross section
18The one week ahead forecast horizon is also adopted by Dumas, Fleming, and Whaley (1998) and Heston and

Nandi (2000), among others, and for comparative purposes we adopt it here as well.
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of option contracts can be priced in about one second running the parallel simulation.

2.7 State Price Density per unit probability

In this section we estimate the SPD per unit of probability, Mt,t+τ , using historical and pricing

densities, pt,t+τ and qt,t+τ , respectively. The historical density pt,t+τ is estimated by simulating

with the FHS method the GJR model fitted to historical S&P 500 log-returns up to time t.19 The

density pt,t+τ depends on the expected return, which is notoriously difficult to estimate. Indeed,

Merton (1980) argues that positive risk premia should be explicitly modeled. Hence, as in Jackwerth

(2000), we set the risk premium at 8% per year. The pricing density qt,t+τ is estimated by simulating

with the FHS method the GJR model calibrated on the cross section of out-of-the-money SPX options

observed on date t. Then, Mt,t+τ is estimated by taking the discounted ratio of the pricing over the

historical densities, Mt,t+τ = e−rτqt,t+τ/pt,t+τ . This procedure gives semiparametric estimates of

Mt,t+τ , because the densities pt,t+τ and qt,t+τ are based on parametric GARCH models, but no a

priori functional form is imposed on Mt,t+τ . For a randomly chosen date, namely July 9, 2003,

Figure 5 shows the historical and pricing densities and the SPD per unit probability for different

times to maturities estimated using the GJR models with the FHS method; see also Table 10 for the

numerical values of Mt,t+τ . The state price densities per unit probability are rather stable across the

different maturities and fairly monotonically decreasing in ST , with some exceptions for the longest

maturity and the lowest states. The state price densities per unit probability outside the plotted

values of ST tend to be unstable, as the density estimates are based on very few observations. The

documented stability of SPD per unit probability is consistent with aggregate risk aversion changing

slowly through time at a given wealth level.

To assess the economic relevance of the FHS approach in estimating SPD per unit probability,

we also estimate Mt,t+τ using the historical and pricing GJR models driven by Gaussian innovations.

The pricing GJR model with Gaussian innovations is also calibrated on the cross section of out-of-the-

money SPX options, obtaining the corresponding pricing GARCH parameters.20 Then, the pricing

density qt,t+τ is obtained by simulating the GJR model with the pricing GARCH parameters and the

randomly drawn Gaussian innovations. The historical density pt,t+τ is obtained by simulating the

19All the density functions are estimated using the Matlab function ksdensity with the Gaussian kernel and the

optimal default bandwidth for estimating Gaussian densities.
20The calibration procedure is as the same as for the GJR model with the FHS method, but where the FHS innovations

are replaced by randomly drawn Gaussian innovations. The same Gaussian innovations are also used to estimate the

historical and pricing GARCH densities for the estimation of Mt,t+τ ’s.
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GJR model using the historical parameter and the previous Gaussian innovations used to simulate

the pricing density. To reduce the variance of the Monte Carlo estimates we use the method of

antithetic variates; see, for instance, Boyle, Broadie, and Glassermann (1997).21 Figure 5 also shows

the SPD per unit probability estimated with the GJR model with Gaussian innovations, that are

clearly higher than Mt,t+τ with the FHS method for the low states, but very close for medium and

high states of the S&P 500. This difference is economically significant. High values of Mt,t+τ on

the left imply that simple state contingent claims are “overpriced” and have very negative expected

rate of returns. As an example, a SPD per unit probability of $3.8 estimated using the GJR model

with Gaussian innovations implies an expected rate of returns of 1/(3.8) − 1 = −73.7% over an

horizon of 73 days, that might be “unreasonably” low. In contrast, for the same contingent claim

a SPD per unit probability of $1.4 estimated using the GJR model with FHS innovation implies an

expected rate of returns of 1/(1.4)− 1 = −28.6%, that is certainly a more “reasonable” return. As

a consequence, according to Mt,t+τ based on Gaussian innovations, out-of-the-money puts appear to

be “overpriced”, while using FHS innovations they are not. Therefore, the negative skewness in the

FHS innovation can account for the excess out-of-the-money put prices and provides an adequate

pricing of the downside market risk.

We support the previous analysis by estimating the SPD per unit probability for each Wednesday t

and each time to maturity τ in our sample, using both GJR GARCH models with FHS and Gaussian

innovations. We obtain 862 density estimates of Mt,t+τ for each model. The pricing GARCH

parameters for the GJR with Gaussian innovations are reported in the second panel of Table 2. To

visually represent the SPD per unit probability we follow a similar approach as in Jackwerth (2000)

showing average estimates of Mt,t+τ . For each date t and maturity τ , the Mt,t+τ ’s are first estimated

on a grid of 100 points of the gross return {St+τ/St}, and then averaged across each year and each

short, medium, long maturity categories. The averaged SPD per unit probability, and ± 0.5 times

the empirical standard deviations, are plotted in Figure 6. The findings are aggregated, but still

indicative of the respective periods and time to maturities covered and the results largely confirm

the previous discussion based on Mt,t+τ estimated on July 9, 2003. In particular, the SPD per unit

probability with FHS method are quite stable across time and maturities, and for low states they

are significantly lower than the SPD per unit probability with Gaussian innovations. Moreover, in

contrast to previous studies (for instance Jackwerth (2000) and Rosenberg and Engle (2002)) almost
21The method of antithetic variates is not used in our FHS approach to preserve the negative asymmetry of the

historical GARCH innovations.
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all the SPD per unit probability are monotonically decreasing as expected.22

Comparing Tables 2 and 3 shows that the asymmetry parameter γ∗ tend to be larger when the

GJR model is calibrated using Gaussian innovation rather than FHS innovations. Indeed, a similar

phenomenon occurs in the Black-Scholes model. The Gaussian distribution of the log-returns cannot

account for the market expectations on the frequency of large negative returns and to recover observed

out-of-the-money put option prices the volatility parameter has to be increased. This phenomenon

induces the well-known volatility smile; see Table 1 for the volatility smile in our database. In the

GARCH framework, despite the stochastic volatility, Gaussian innovations cannot account for the

previous market expectations and to fit out-of-the-money put prices a large asymmetry parameter

γ∗ is needed. Using FHS innovations the GJR model can more easily price the out-of-the-money put

prices giving SPD per unit probability in line with economic reasonings. When GARCH models are

driven by Gaussian innovations, Duan (1995) shows that the historical and the pricing parameters

are equal. Table 2 provides empirical evidence that in the GJR model the two sets of parameters

are quite different. This finding points out the theoretical inconsistency of the GJR model with

Gaussian innovations and can support the GJR model with FHS innovations—given the documented

good pricing performance.

Several other studies provide estimates of SPD per unit probability. Perhaps the most closely

related study is provided by Rosenberg and Engle (2002). The main similarity is that in both cases,

conditional SPD per unit probability are investigated, hence reflecting current market conditions

such as high or low volatility. The main difference is that Rosenberg and Engle (2002) consider a

flexible but parametric functional form for Mt,t+τ , while here we provide nonparametric estimates

of the ratio qt,t+τ/pt,t+τ . Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000) provide nonparametric

estimates of SPD per unit probability (or closely related quantities such as risk aversion functions),

but they exploit the time continuity of Mt,t+τ to average state prices and probabilities across time.

Hence, their result can be interpreted as estimates of the average SPD per unit probability over

the sample period, instead of the conditional estimate; for a recent extension see Constantinides,

Jackwerth, and Perrakis (2006). Finally, compared to all the previous studies we provide estimates

of SPD per unit probability for many more time horizons and much larger ranges of St+τ/St.
22In this paper we use a different methodology, sample period and moneyness/maturity ranges for the SPX options

compared to the other studies.
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3 Hedging

In this section we present a new approach to compute hedge ratios for implementing classical delta

hedging strategies and we study hedging performances in the presence of volatility shocks.

3.1 Numerical example

Our main result is that the delta hedging strategy based on the Black-Scholes model calibrated on

the implied volatility surface cannot be largely enhanced using any alternative pricing model. To

understand why this is the case we provide a simple numerical example in Table 11. The three rows

in the middle are call option market prices.23 The first row is obtained multiplying the middle row

by 0.9 and the last row is obtained multiplying the middle row by 1.1, that is assuming a first degree

homogeneous pricing model, C(κS, κK) = κC(S,K), where C is the call option pricing function

and κ is close to one. In general, market option prices might not be homogenous functions of the

underlying asset and strike prices. However, for the computation of hedge ratios we will not impose

the homogeneity property everywhere, but only as a local approximation. The last assumption is

weaker and based on the local continuity of the pricing function C as a function of the stock price S

and the strike price K.

Incremental ratios, that is change in option price over change in stock price, can be computed

between the first two and then again the last two rows, i.e. ∆45 := (5.60 − 2.16)/(49 − 44.1) and

∆55 := (2.64−1.00)/(53.9−49). Notice that the homogeneity property was used to determine option

prices associated to values of the underlying asset that are different from the current value, S = 49.

Taking the average of these two ratios, for the strike price K = 50 gives an estimate of delta equals

to 0.518, which is almost identical to the delta 0.522 from the Black-Scholes model calibrated at the

implied volatility 20.0% for the middle row. Therefore, the “almost” model free hedge ratio (based

on market prices and the local homogeneity of the pricing function) is very close to the Black-Scholes

hedge ratio commonly used by practitioners. This result implies that pricing models alternative to

Black-Scholes calibrated at the implied volatility will generally lead to very similar hedge ratios, if

they fit well market prices. It appears therefore that deltas are to a large degree determined by

market option prices, independently of the chosen model.

In the above computation of the hedge ratio there is a discretization error and an error due to

the volatility smile. In fact, in the absence of a volatility smile, Black-Scholes option prices would
23The implied volatilities are 21.2%, 20.0% and 22.1%, respectively, the time to maturity is 20/52 years and the risk

free rate r is 5%. These options are used for illustrative purposes and as an example of volatility smile.
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be homogeneous functions of the stock and the strike price and the hedge ratio computed using the

previous two approaches would be very close; see Barone-Adesi and Elliott (2006) for a numerical

experiment. The discretization error leads to a discrete delta which is approximately the average of

the Black-Scholes deltas computed at the two extremes of each interval and approximated by ∆45

and ∆55. To investigate the discretization error let ∆(K) denote the delta as a function of the strike

price K. For small intervals of the strike price the delta hedge ratio is approximated by

∆(50) ≈ ∆(50) + ∆′(50)

<0︷ ︸︸ ︷
(45− 50) + ∆(50) + ∆′(50)

>0︷ ︸︸ ︷
(55− 50)

2
≈ ∆45 + ∆55

2
,

where ∆′(K) is the first derivative of ∆(K). Therefore, the two discrete ratios considered, ∆45 and

∆55, are affected by opposite errors up to the first order. Taking their average eliminates these errors.

The only error left is due to the smile effect. However, this error is small if the strike price increment

is small relative to the asset price and its volatility. This is generally the case for the strike price

increments of the SPX options, that are about 1% of the strike price. The reader may verify this

simple result on the options of his choice.

3.2 Impact of volatility shocks on delta hedging

The only significant deterioration of hedging occurs in the presence of large volatility shocks, which

diminish the effectiveness of delta hedging. To document this phenomenon we compare the out-of-

sample forecasts of option prices for two different days affected by volatility shocks of different mag-

nitudes. We consider the Thursday (t1 + 1) = September 19, 2002, where a relatively large increase

in the volatility was generated by the preceding Wednesday negative log-return log(St1/St1−1) =

−3.01%, and the Thursday (t2 + 1) = July 10, 2003, where a modest change in volatility was in-

duced by the preceding Wednesday log-return log(St2/St2−1) = −1.35%.24 Then, to evaluate the

out-of-sample forecasts we run the following Mincer-Zarnowitz regressions (see Mincer and Zarnowitz

(1969) and Chong and Hendry (1986)) for each date ti, i = 1, 2,

1) Pmarket
t+1 = η0 + η1P

bs
t,t+1 + errort+1

2) Pmarket
t+1 = η0 + η1P

bs
t,t+1 + η2P

garch
t,t+1 + errort+1

3) Pmarket
t+1 = η0 + η2P

garch
t,t+1 + errort+1,

24Recall that in the GARCH model, the volatility of the log-return log(St+1/St) is already determined at date t and

depends on the return innovation εt driving the log-return log(St/St−1) at time t.
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where Pmarket
t+1 are the out-of-the-money SPX option prices observed on date t + 1, P bs

t,t+1 are the one

day ahead out-of-sample Black-Scholes forecasts of option prices at time t+1 computed by plugging

in the Black-Scholes formula the stock price St+1, the risk free rate r, the dividend yield d at time

t + 1 and the implied volatility observed at time t, i.e. on the Wednesdays September 18, 2002 and

July 9, 2003. P garch
t,t+1 are the one day ahead out-of-sample GARCH forecasts obtained using St+1,

r, d at time t + 1, the GARCH parameter calibrated at time t and σt+1 updated according to the

historical GARCH model estimated at time t. We apply the previous filtering criteria to the SPX

option prices on the Thursdays t1 + 1 and t2 + 1. If the out-of-sample forecasts are accurate, η0

should be close to zero, and η1 or η2 close to one. The ordinary least square estimates, t-statistics

and the variance of the forecast errors of the previous regressions are given in the first two panels

of Table 12. All R2 are above 0.99 and the F-statistics are highly significant, meaning that overall

the forecasts are quite accurate. The variance of the forecast errors using only the Black-Scholes

forecasts in regressions 1) are smaller than using only the GARCH forecasts in regressions 3) for both

Wednesdays t1 and t2. Moreover, in the regressions 2) the weights η1 of the Black-Scholes forecasts

are larger than the weights η2 for the GARCH forecasts. These results are due to the advantage of

the Black-Scholes model calibrated at each point of the volatility surface at time t, and therefore

having zero pricing errors initially. However, for Wednesday t1 = September 18, 2002, where a large

volatility shock occurs, from regression 1) to regression 2) the variance of the prediction error is

reduced by 50% adding the GARCH forecast as a regressor. The η2 parameter is highly significant

and the likelihood ratio (LR) test of the regression model 1) versus the regression model 2) strongly

reject the null hypothesis, i.e. the regression model 1). Hence, the GARCH model carries on a large

amount of information on option price dynamics. The main reason is that it provides a dynamic

model for the volatility, while the Black-Scholes model does not. Interestingly, the large positive

value of η0 in regression 1) for the Wednesday t1 means that the Black-Scholes forecasts heavily

underestimate Pmarket
t+1 . Adding the GARCH forecasts accounts for the aforementioned increase in

volatility, reducing η0 and the bias in the forecast regression 2). In contrast to the Black-Scholes

model, the GARCH model is able to detect the increase in volatility due to the large negative returns,

and this phenomenon is reflected in its forecasts of volatilities and option prices. For the Wednesday

t2 = July 9, 2003, the reduction in the variance of the prediction errors is more modest and equals

to 19%, although the η2 parameter is highly significant and the LR test strongly reject the null

hypothesis given by the regression model 1). Hence, the GARCH forecasts have more explanatory

power when the change in volatility is more pronounced. This point will deeply investigate in a

while.
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To support the previous findings, we repeat the regression analysis for each Wednesday t from

January 2, 2002 to December 29, 2004. All the regressions have R2 above 0.98 and F-statistics highly

significant. In all cases but one, the coefficients η2 are statistically significant at 1% confidence level.

The p-values for LR tests of the regression model 1) versus model 2) are below 10% in 79.7% of the

occasions, and below 1% in 70.6% of the occasions. These findings strongly confirm the explanatory

power of GARCH forecasts in predicting volatilities and option prices.

To deepen the analysis we investigate whether the explanatory power of the GARCH model is

stronger when the Wednesday log-return is negative rather than positive—for the leverage effect

negative returns are expected to increase the volatility more than positive returns. The last two pan-

els in Table 12 show two subsets of results conditioning on the Wednesday log-return log(St/St−1)

being rather negative, i.e. below −0.01, or rather positive, i.e. above 0.01 on a daily base.25 Ta-

ble 12 presents some empirical evidence to support the hypothesis that the explanatory power of

GARCH forecasts is stronger when the Wednesdays log-return is rather negative. For instance,

when log(St/St−1) < −0.01, the average η2 parameter in regressions 2) is 0.24, which is larger than

0.17 in the last panel where log(St/St−1) > 0.01. For the two subsets of negative and positive

Wednesdays log-returns, Table 12 shows the means and the standard deviations of the LR p-values

of the regression model 1) versus model 2). The skewness of the LR p-values distributions are 2.38

and 1.57, and 83.3% and 54.2% of p-values are below 10%, respectively. This result confirms that

GARCH model has higher explanatory power when the Wednesday log-return is rather negative.

Figure 7 shows on the vertical axis the reduction in the variance of the forecast errors from the

regression model 1) to the regression model 2) and on the horizontal axis the log-return log(St/St−1)

for each Wednesday t. We also plot the regression line of the variance reductions on the S&P 500

Wednesdays log-returns. Most of the daily log-returns are close to zero and the R2 is only 3.8%, but

the p-value for the F-test is 2% and the slope is statistically away from zero at 5% confidence level.

Also this plot confirms that the GARCH forecasts have stronger impacts in reducing the variance of

the forecast errors when the Wednesday log-returns are negative.

Unfortunately, our GARCH forecasts are conditioned on the current index level and cannot be

used to improve significantly delta hedging. Their explanatory powers simply indicate that delta

hedging is less effective in the presence of large volatility shocks.
25In this analysis we discard the daily log-returns are around zero to evaluate the impact of rather large log-returns

on volatility. When also the log-returns around zero are included in this analysis, the results for the two subsets of

negative and positive log-returns in Table 12 tend to be rather close.
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4 Conclusions

We propose a new method for pricing options based on GARCH models with filtered historical inno-

vations. In an incomplete market framework we allow for the objective and the pricing distributions

to have different shapes enhancing the model flexibility to fit market option prices. An extensive

empirical analysis based on S&P 500 index options shows that our model outperforms other com-

peting GARCH pricing models and ad hoc Black-Scholes models. In contrast to previous financial

literature, using our GARCH model and a nonparametric approach we obtain decreasing state price

densities per unit probability as suggested by economic theory and validating our GARCH pricing

model. Furthermore, implied volatility smiles appear to be explained by the negative asymmetry of

the filtered historical innovations, with no need of “unreasonably” high state prices for out-of-the-

money puts. A new simplified delta hedging scheme is presented based on conditions usually found

in index option markets, namely the local homogeneity of the pricing function. We provide empirical

evidence and we quantify the deterioration of the delta hedging in the presence of large volatility

shocks. Further refinements of pricing and stability issues are left to future research.
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Maturity

Moneyness Less than 60 60 to 160 More than 160

K/S Mean Std. Mean Std. Mean Std.

< 0.85 Put price $ 0.77 1.20 2.54 3.20 8.69 7.63

σbs% 38.97 9.59 33.36 7.75 28.37 5.21

Bid-Ask% 0.99 0.69 0.69 0.68 0.27 0.36

Observations 1,798 2,357 2,845

0.85–1.00 Put price $ 8.43 7.60 19.12 11.63 38.80 15.67

σbs% 22.38 7.05 21.88 5.35 21.28 3.91

Bid-Ask% 0.19 0.21 0.10 0.05 0.06 0.03

Observations 3,356 2,136 2,314

1.00–1.15 Call price $ 7.45 7.81 15.79 12.60 34.82 18.19

σbs% 17.55 5.80 17.31 5.02 17.61 4.00

Bid-Ask% 0.34 0.46 0.17 0.23 0.07 0.04

Observations 2,955 2,128 2,247

> 1.15 Call price $ 0.34 0.43 0.85 1.61 3.96 5.60

σbs% 34.87 12.35 24.34 8.27 18.87 4.48

Bid-Ask% 1.81 0.47 1.49 0.71 0.83 0.78

Observations 1,633 2,288 3,154

Table 1: Database description. The table shows mean, standard deviation (Std.) and number of observations for

each moneyness/maturity category of out-of-the-money SPX options observed on Wednesdays from January 2, 2002 to

December 29, 2004, after applying the filtering criteria described in the text. σbs is the Black-Scholes implied volatility.

Bid-Ask% is 100× (ask price−bid price)/market price, where the market price is the average of the bid and ask prices.

Moneyness is the strike price divided by the spot asset price, K/S. Maturity is measured in calendar days.
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a0 a1 × 103 a2 × 107 a3 × 10 a4 × 10 a5 × 104

2002

Mean 1.11 −1.41 6.23 −1.42 2.57 −2.02

Std. 0.12 0.22 1.09 1.37 1.41 1.83

2003

Mean 1.07 −1.45 6.48 −1.88 1.64 −0.57

Std. 0.21 0.31 1.32 2.52 1.19 3.12

2004

Mean 1.35 −1.68 5.68 −5.45 0.93 3.87

Std. 0.11 0.22 1.32 1.75 0.73 1.48

Table 4: The table shows the estimated coefficients of the ad hoc Black-Scholes model, σbs = a0 +a1K +a2K
2 +a3τ +

a4τ
2 +a5Kτ, where σbs is the Black-Scholes implied volatility for an option with strike K and time to maturity τ . The

model is estimated with ordinary least square on the out-of-sample SPX options for each Wednesday from January 2,

2002 to December 29, 2004.
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Panel A: Aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 0.87 0.44 0.08 −6.02 4.64 50.50 23.69 21.16 10.75

HN 1.19 0.74 −0.20 −5.66 6.47 30.65 −44.20 23.93 −25.74

IG 1.27 0.77 −0.10 −5.41 6.34 32.06 −32.31 22.49 −25.82

BS 3.39 2.15 0.06 −15.88 28.66 50.82 69.95 57.91 39.46

Panel B: Valuation errors by years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

2002

FHS 0.88 0.43 0.06 −5.63 4.64 47.57 14.67 14.80 4.82

HN 1.16 0.72 −0.21 −4.64 5.55 27.59 −48.00 19.55 −33.06

IG 1.26 0.76 −0.15 −5.14 5.89 27.45 −44.15 19.33 −33.87

BS 3.69 2.36 0.03 −15.25 28.66 48.38 51.20 58.95 39.79

2003

FHS 0.93 0.47 −0.06 −6.02 3.68 44.63 0.95 20.90 6.44

HN 0.92 0.57 −0.28 −3.82 4.92 25.73 −64.94 22.10 −32.13

IG 0.93 0.56 −0.19 −3.72 6.09 27.75 −49.26 20.67 −32.09

BS 3.32 2.12 0.03 −15.88 15.35 49.86 68.37 58.59 38.69

2004

FHS 0.79 0.43 0.23 −3.41 3.90 58.86 53.82 27.61 20.58

HN 1.41 0.91 −0.12 −5.66 6.47 38.24 −21.06 29.92 −12.60

IG 1.53 0.98 0.02 −5.41 6.34 40.62 −4.86 27.27 −12.08

BS 3.15 1.98 0.12 −13.98 15.18 54.11 89.74 56.26 39.85

Table 5: In-sample pricing errors. RMSE is the root mean square error of the dollar pricing error (model price −
market price); MAE is the dollar average absolute pricing error outside the bid-ask spread (MAE% is in relative terms

and in percentage); MOE is the dollar average pricing error outside the bid-ask spread (MOE% is in relative terms

and in percentage); Min (Max) is the minimum (maximum) pricing error; Err>0% is the percentage of positive pricing

errors; ErrBD% is the average of 100× (model price−market price)/(bid-ask spread).
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Panel A: Aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 1.48 0.86 0.09 −9.20 7.84 49.92 31.80 26.52 13.09

HN 1.55 0.98 −0.20 −7.69 9.52 30.27 −44.90 25.36 −25.38

IG 2.36 1.33 0.19 −11.12 20.91 35.08 2.48 27.90 −19.61

BS 3.82 2.32 0.18 −18.19 63.31 50.97 88.89 66.38 47.03

Panel B: Valuation errors by years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

2002

FHS 1.72 1.00 0.03 −9.20 7.10 43.61 18.01 19.64 5.57

HN 1.70 1.07 −0.27 −7.69 6.76 26.33 −53.00 21.16 −33.26

IG 2.22 1.36 −0.09 −11.12 12.65 29.11 −35.65 22.68 −31.56

BS 4.41 2.59 0.27 −16.03 63.31 49.59 80.71 70.94 51.32

2003

FHS 1.36 0.78 −0.14 −8.16 6.06 41.12 −10.62 23.28 4.81

HN 1.29 0.81 −0.31 −6.99 5.59 24.51 −70.93 23.87 −32.44

IG 1.58 0.96 0.01 −6.52 9.50 30.02 −31.94 22.81 −29.44

BS 3.62 2.27 0.11 −18.19 26.76 49.32 78.23 68.51 47.51

2004

FHS 1.35 0.81 0.37 −7.12 7.84 63.86 83.99 35.76 27.62

HN 1.63 1.07 −0.03 −5.99 9.52 39.21 −13.22 30.54 −11.67

IG 3.00 1.65 0.63 −7.08 20.91 45.19 69.07 37.38 0.37

BS 3.40 2.10 0.16 −13.46 32.05 53.75 106.26 60.27 42.72

Table 8: Out-of-sample pricing errors. For the legend see Table 5.
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S&P 500 800 900 1,000 1,100 1,200

Mt,t+38 1.72 1.26 1.08 0.64 0.20

Mt,t+73 1.37 1.27 1.15 0.71 0.36

Mt,t+164 1.56 1.48 1.22 0.84 0.48

Mt,t+255 1.69 1.64 1.26 0.90 0.59

Table 10: The table shows the state price densities per unit probability Mt,t+τ for different time to maturities τ =

38, 73, 164, 255 days, estimated for July 9, 2003; see also Figure 5. Mt,t+τ is the discounted ratio of the pricing over

the historical densities of the GJR GARCH model with FHS method.

Strike price Asset price Option price

45 44.1 2.16

45 49 5.60

50 49 2.40

55 49 1.00

55 53.9 2.64

Table 11: “Homogeneous hedging of the smile”. The three rows in the middle are market option prices. The first

row is obtained multiplying the middle row times 0.9 and the last row is obtained multiplying the middle row by 1.1.
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η0 η1 η2 V ar[errort+1] LR p-value

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

t1 = 09/18/’02

1) 0.49 1.00 1.23

t-stat. 4.82 221.78

2) 0.08 0.58 0.42 0.61 0.00

t-stat. 0.97 18.09 13.54

3) −0.40 0.98 1.72

t-stat. −3.24 187.60

t2 = 07/09/’03

1) −0.03 1.00 0.16

t-stat. −0.70 499.38

2) −0.09 0.74 0.26 0.13 0.00

t-stat. −2.29 16.06 5.52

3) −0.26 1.00 0.37

t-stat. −4.00 330.01

Return(−)

1) 0.17 0.25 1.01 0.02 0.56 0.57

t-stat. 3.49 5.10 443.74 218.23

2) 0.02 0.18 0.76 0.30 0.24 0.30 0.43 0.46 0.11 0.27

t-stat. 1.09 3.90 22.64 17.43 5.68 5.12

3) −0.29 0.53 1.00 0.03 1.08 0.79

t-stat. −2.81 5.57 259.13 92.80

Return(+)

1) −0.14 0.21 0.99 0.01 0.45 0.40

t-stat. −3.05 4.67 424.58 204.32

2) −0.16 0.18 0.82 0.20 0.17 0.20 0.42 0.39 0.16 0.23

t-stat. −3.31 4.03 21.81 18.88 3.39 3.76

3) −0.21 0.44 0.99 0.02 1.12 0.92

t-stat. −3.31 4.84 240.46 67.51

Table 12: Forecast regressions: 1) Pmarket
t+1 = η0 +η1P

bs
t,t+1 +errort+1, 2) Pmarket

t+1 = η0 +η1P
bs
t,t+1 +η2P

garch
t,t+1 +errort+1,

3) Pmarket
t+1 = η0 +η2P

garch
t,t+1 +errort+1. Pmarket

t+1 are the option prices observed on time t+1, P bs
t,t+1 are the Black-Scholes

forecasts of option prices for t + 1 computed by plugging in the Black-Scholes formula St+1, r, d at time t + 1 and the

implied volatility observed on time t. P garch
t,t+1 are the GARCH forecasts obtained using St+1, the GARCH parameter

calibrated at time t and σt+1 updated according to the estimates at time t. V ar[errort+1] is the variance of the

regression errors, Std. is the standard deviation, LR is the p-value for the likelihood ratio test of the null hypothesis 1)

versus the alternative hypothesis 2), and Return(−) (Return(+)) are daily log-returns of the S&P 500 from t to t + 1

smaller than −0.01 (larger than 0.01).
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Figure 1: Daily log-return of the S&P 500 index from August 23, 1989 to July 9, 2003, (i.e. 3,500 log-returns), the

conditional GARCH volatility σt (on an annual base) and the filtered innovations zt. The GARCH model is estimated

using the PML approach with the nominal assumption of Gaussian innovations
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Figure 2: Calibration of the GJR GARCH model with the FHS method on the cross section of out-of-the-money

SPX options on July 9, 2003. Moneyness is the strike price divided by the spot asset price.
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Figure 3: Absolute mispricing in percentage, i.e. 100 × |model price −market price|/market price, by the different

pricing models, averaged across the Wednesdays from January 2002 to December 2004 for out-of-the-money SPX

options. Left plots are in-sample comparisons and right plots are out-of-sample comparisons. Moneyness is the strike

price divided by the spot asset price.
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Figure 4: News impact curves the FHS, HN and IG GARCH models based on the average pricing parameters

reported in Table 3 for the year 2003, 2003 and 2004 from up to bottom. The horizontal axis is the standardized

GARCH innovations z. The vertical axis is the change in volatility from the long-run level, σ(z)−
p

EQ[σ2] on an annual

base, as function of the standardized innovation. For GJR model σ2(z) = ω∗+β∗EQ[σ2]+EQ[σ
2](α∗+γ∗I{z<0})z

2, for

the HN model σ2(z) = ω∗hn + β∗hnEQ[σ
2] + α∗hn(z − γ∗hn

p
EQ[σ2])2, for the IG model σ2(z) = w∗ + b∗EQ[σ2] + c∗ỹ(z) +

a∗EQ[σ2]2/ỹ(z), where ỹ(z) = (z +
√

δ∗)
√

δ∗, and δ∗ = EQ[σ
2]/η∗2. Notice that ỹ(z) is the unscaled inverse Gaussian

innovation and has to be positive.
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Figure 5: The left plots show the pricing and the historical density estimates for different time horizons on July 9,

2003. The pricing density is obtained by calibrating the GJR model with FHS method calibrated on the cross section of

out-of-the-money SPX options. The historical density is obtained by fitting the GJR GARCH model to 3,500 historical

S&P 500 log-returns and using the PML method. The right plots show the SPD per unit probability given by the

ratio of the pricing over the historical density discounted by risk free rate. The Gaussian SPD are based on the GJR

GARCH model calibrated with the Gaussian innovations.
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Figure 6: Average SPD per unit probability. For each Wednesdays t from January 2, 2002 to December 29, 2004

and for each time to maturity τ between 10 and 360 days, the SPD per unit probability Mt,t+τ are estimated by

the discounted ratio of the pricing GARCH density qt,t+τ over the historical GARCH density pt,t+τ . For each t, the

pricing GJR model is calibrated on the cross section of out-of-the-money SPX options, and the historical GJR model is

estimated using 3,500 historical S&P 500 log-returns via the PML method. Two estimates of Mt,t+τ are provided using

(i) the FHS method and (ii) the Gaussian innovations. In case (i), qt,t+τ and pt,t+τ are obtained by simulating the

pricing and historical GJR model using estimated GARCH innovations. In case (ii), GARCH innovations are replaced

by Gaussian innovations. For each year and for each maturity category, the plots show the average of Mt,T computed

for a set of gross returns ST /St, and also the average of Mt,T ± 0.5 times the empirical standard deviation of Mt,T .
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Figure 7: Reduction in the variance of forecast error when the FHS GARCH forecasts are added to the Black-Scholes

forecasts for each Wednesday t from January 2, 2002 to December 29, 2004. The vertical axis displays the variance

reduction, that is (V ar[errort,1] − V ar[errort,2])/V ar[errort,1], where the errors are from the forecast regression 1)

Pmarket
t+1 = η0 + η1P

bs
t,t+1 + errort,1, and the forecast regression 2) Pmarket

t+1 = η0 + η1P
bs
t,t+1 + η2P

garch
t,t+1 + errort,2. See

Table 12 for the definition of Pmarket
t+1 , P bs

t,t+1 and P garch
t,t+1 . The horizontal axis displays the daily S&P 500 log-return

log(St/St−1) for each Wednesday t.
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