RISK MANAGEMENT

Values

Risk

A simplified approach to the conditional estimation of value at risk, by

Giovanni Barone-Adesi 477 Kostas Giannopoulos

o estimate VaR requires an estimation of portfolio

volatility. But the historical volatility of a bank portfolio

is an ill suited measure of its current volatility, because

investment weights may change rapidly and individual

securities’ volatility may shift over time. Moreover, to

consolidate the volatilities of individual components into portfo-

lio volatility requires a correlation matrix of returns, itself subject

to shifts over time. And, even if the correlation matrix was con-

stant, the effort required to estimate it in a multivariate time-series
framework would pose a computational challenge.

A simple procedure for estimating current portfolio volatili-

ty is to construct the hypothetical return series the portfolio
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would have earned if it had been kept constant at its current
weights in the past. (Options may be accounted for by substi-
tuting the products of their current delta multiplied by the
volatility of their underlying assets.)

The resulting time series of portfolio returns is then analysed
to identify the best fitting time-series model. Accurate point esti-
mates of current volatility are then produced and VaR is com-
puted from them.

Let R, be the Nx1 vector (R;,, Ry ...;Ry,) where Ry, is the
return on the ith asset over the period (t-1,t) and let W be the
Nx1 vector of the portfolio weights over the same period. The
historical returns of our current portfolio holdings are given by:
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W represents investment holdings, whether actual or hypo-
thetical, and the series Y the path of portfolio returns through
history. Following Markowitz (1956) the portfolio’s risk and
return trade-off can be expressed in terms of the statistical
moments of the multivariate distribution of the weighted invest-
ments as:

E(Y)=EWTR)=m @.1)
var(Y) = WTQW = ¢? 22)
where € is the unconditional variance-covariance matrix of the
returns of the N assets.

A simplified way to find the portfolio’s risk-and-return charac-
teristics is by estimating the first two moments of Y.

E(Y)=m (3.1)
var(Y;) = E(Y, - my* = o? (32)
Hence, if historical returns are known, the portfolios mean and
variance can be found as in (3.1), (3.2). This is easier than (2.1),
(2.2) and still yields the same results.

The method in (3.1) and (3.2) can easily be deployed in risk
management to compute the value at risk at any given time t.
For every change in W, however, the series of past returns, Y,
needs to be reconstructed and o?, the volatility of the new posi-
tion, needs to be re-estimated as in (3.2).
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Time-varying risk

The portfolio risk-return estimates given rely upon a very strong
assumption; that the series of returns, Y, is stationary. That
means that both m and o2 do not change over the measurement
period. Yet several studies have concluded that asset variances
and covariances are not constant but change over time, eg
Christie 1982.

A number of solutions have been proposed, covering how
best to estimate current variances and covariances. Perhaps the
most popular method is exponential smoothing (ES), proposed
by JP Morgan. More sophisticated (but also computationally
more demanding!) is Garch, based on the work of Engle (1982)
and Bollerslev (1986).

Because of the huge dimensions that a variance-covariance
matrix may have, both methods seek first to partition this matrix
into (N-1)N/2 off-diagonal elements and then to capture the
joint dynamics of the second moments for each possible pair-
wise combination of investment holdings. The volatility of cur-
rent investment holdings is then computed as in (2.2). The
problems both methods face stem from the way they partition
the variance-covariance matrix. Unless certain preconditions are
satisfied, there is no guarantee that the resulting variance-covari-
ance matrix comes from a NxN multivariate distribution. Hence
the portfolio variance estimates are very likely to be biased.
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Fig 2

Portfolio C
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A simplified approach

Our simplified approach to computing portfolio VaR aims to
overcome both of the above problems —non-stationarity and
dimensionality — while remaining unbiased on volatility. We
believe that past returns contain all necessary information about
the current portfolio’s risk-return trade-off. And, in order to esti-
mate portfolio volatility, it is sufficient to study the portfolio’s
returns rather than those of its components.

It is very likely that the volatility of most individual assets
included in a portfolio will change over time, particularly if
returns are measured with high frequency, ie daily. And, if the
constant volatility hypothesis is rejected estimates computed by
(2.2) or (3.2) cease to be reliable.

We can compute portfolio Y’s volatility as time-varying by
treating past returns as time series in their own right. This
approach has many advantages. It is simple, easy to compute
and overcomes the dimensionality and bias problems that arise
from estimating the covariance matrix. At the same time, the

‘TABLE | PORTFOLIO COMPOSITION
(%AGE WEIGHTS)

i Portfolio Bonds | Equity Commodities i
| A Italian 40 i
German 30 |
LGk 30 |
B Italian 30 | S&P 500 15
German 20 | FT-SEI00 15
C | ltalian 15 S&P 500 15 Oil 10
|German I5 | FT-SE 100 |5 Cocoa 8 |
| Gilt 10 | Copper 6 |
i i Alumin 6 |
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portfolio’s past returns contain all the necessary information
about the dynamics that govern the aggregate current invest-
ment holdings and we should really make the best use of this
information?. For example it might be possible to capture the
time path of portfolio volatility using a Garch model. This
hypothesis is based on the fact that most high-frequency securi-
ty returns have been found to contain volatility clusters.

To illustrate our procedure we collected daily data for assets
with different risk exposure and we constructed three hypotheti-
cal portfolios, as in fable 1. We then employed Garch methodol-
ogy and stress analysis on the portfolio return to study its riski-
ness. We generated constant-weighted portfolios for the period 1
November 1991-15 November 1994. Futures contracts have been
rolled to create a single series. Missing observations and bank hol-
idays have been set equal to a smoothed value®, When a futures
contract was rolled, the first observation was considered as miss-
ing and so was set equal to its smoothed value. The three portfo-
lios we constructed had the weights as shown in table 1.

For a portfolio diversified across a wide range of assets (such
as portfolio C), the non-constant volatility hypothesis is an
open issue. The LM test (regressing the squared residuals of an
autoregressive process against their own lagged values) can be
used to verify whether there are any Garch effects. Diagnostic
test results allow us to conclude that the implemented Garch
parameterisation, although it has been very general and simple,
has removed the Garch effects from the portfolio.

Figures 1 and 2 illustrate how the daily annualised standard
deviation of portfolios A and C behaved over the tested period.
The upper line shows the volatility of an undiversified portfolio,
wherein all pair-wise correlation coefficients are 1.0. (The
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Portfolio C '
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volatility charted is simply the weighted average of conditional
volatilities of assets in the portfolio.) Because portfolio C is
diversified, its volatility oscillates less (between 3.65% and
7.29%) than portfolios A and B.

There are three useful products of our methodology. The
first is a simple and accurate measure for the volatility of the cur-
rent portfolio. This is achieved without using computationally
intense multivariate methodologies. The second is the possibili-
ty of comparing a series of volatility patterns similar to figures 1
and 2 with the historical volatility pattern of the actual portfo-
lio with its changing weights. This comparison allows an evalu-
ation of the manager’s ability to time volatility. Timing volatili-
ty is an important component of performance, especially if
expected security returns are not positively related to current
volatility levels. Finally, the possibility of using the Garch resid-
uals on the current portfolio weights allows for the implemen-
tation of meaningful stress-testing procedures. We will focus on
stress testing and the evaluation of correlation risk because of
their importance in risk management models.

Stress analysis

The series innovations affecting the volatility of one of the port-
folios is exhibited in figure 3. It is apparent that the distribution
of the innovations is not normal, with values reaching up to
four standard deviations for the most diversified portfolio, C.
Negative innovations are more modest, ranging up to four.
Worst-case scenarios for stress analysis may be built applying
the largest outliers in the innovation series to the current Garch
parameters. This exercise simulates the effect of the largest his-
torical shock on the current market conditions. Thus, to stress
our portfolios, it is not necessary to choose between the largest
shocks for the different securities because the most interesting

shocks are a direct by-product of the Garch estimation of port-
folio volatility.

Correlation and diversification

Conditional VaR models which use the quadratic equation (2.2)
to update portfolio volatility, eg RiskMetrics, need first to esti-
mate all the possible pair-wise covariances. In a widely diversi-
fied portfolio, containing say 100 assets, there are 100 variances
and 4950 conditional covariances to be estimated. Furthermore,
any model used to update the covariances must keep the multi-
variate features of the joint distribution. With a large matrix like
that, one is unlikely to get unbiased estimates for all the 4950
covariances and at the same time to guarantee that the joint
multivariate distribution still holds. Clearly, errors in covari-
ances as well in variances will affect the accuracy our portfolio’s
VaR estimate and lead to the wrong risk management decisions.

Our approach estimates conditionally the volatility of only
one, univariate, time series — the portfolio’s return — overcom-
ing all of the above problems, yet measuring in full the changes
in assets” variances and covariances. Moreover, it discloses the
impact that the overall changes in covariances have on the port-
folio volatility. It can tell us in what proportion an
increase/decrease in the portfolio’s VaR is due to changes in
asset variances or correlations. We call this type of analysis cor-
relation stability.

Each correlation coefficient is subject to changes at any
time. However, changes across the correlation matrix might
themselves not be correlated and therefore their impact on the
overall portfolio risk may be diminished. Our conditional VaR
approach allows to attribute any changes in the portfolio’s con-
ditional volatility to two main components; changes in asset
volatilities and changes in asset correlations. If h, is the portfo-
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Fig 4 Correlation stability
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lio’s conditional variance, as estimated in (4.2), its time-varying
volatility is =Vh,. This is the volatility estimate of a diversified
portfolio at period t.

By setting as equal to 1.0 all the pair-wise correlation coeffi-
cients in each period, the portfolio’s volatility becomes the
weighted volatility of its components. Conditional volatilities of
the individual asset components can be obtained by fitting a
Garch-type model for each return series. We note the volatility
of this undiversified portfolio as s, The quantity (1-6,)

5t
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tells us in what proportion the portfolio volatility has been
diversified away because of non-perfect correlations. If that
quantity does not change significantly over time, then the over-
all effect of time-varying correlations is invariant and we have
correlation stability.

Figure 4 shows how correlation stability improves for more
diversified portfolios. Portfolio A, containing only bonds, is
subject to greater correlation risk because of the tendency of
bonds to fall in step in the presence of large market moves. Risk
managers who relied on average standard deviations would be
surprised by the extreme volatility values our bond portfolio
might produce in a crash.

Our conditional volatility estimates provide early warnings
about this risk increase and therefore are a useful supplement to
existing risk management systems. L4
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2 If W is known a priori, the portfolio’s (unconditional) volatility
can be computed easily, as in (3.2).

3 The downhill simplex algorithm was used to find the optimal
smoothing coefficients for a variety of specifications. Then we
selected the smoothing model that minimised the Schwarz
criterion.
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